388 research outputs found

    An Analytical Overview of Labour Market Reforms Across the EU: Making Sense of the Variation

    Get PDF
    While there has been an increase in interest in employment protection, for example in the literature on labour market insiders and outsiders, there is a lack of cross-country comparative research on reforms of the employment protection legislation and the regulation of temporary work. This article provides such an overview for a wide set of countries including the EU-15 plus five Central and Eastern European countries: the Czech Republic, Hungary, Poland, Slovakia and Slovenia. It makes two contributions: first, it identifies a set of reform types. One major reform type, two-tier reform, and several minor types: deregulation of temporary employment in countries with low levels of job protection for regular work; reregulation in countries with high levels of temporary employment; reregulation in countries with low regulation of temporary work; and across-the-board concurrent deregulation. Second, the article highlights the difference in regulation that exists between fixed-term contracts concluded inside and outside temporary work agencies (TWAs). In identifying reform types, and the difference in the regulation of fixed-term contracts inside and outside TWAs, the article contributes to our understanding of the variation in labour market regulation and reform. In addition, the article points to different explanations for the reforms, in particular the influence of EC directives.

    Re-examining And Extending Penrose's Growth Theory: Updating Penrose For The 21St Century

    Get PDF
    Edith Penrose argued that firms face a constraint on organic growth because of growth activities in previous periods. Central to her ideas about growth is the distinction between managerial and entrepreneurial capabilities. Growth in previous periods creates adjustment costs which are associated with managerial capabilities and impacts on the growth opportunities which are associated with entrepreneurial capabilities. In this paper we revisit Penrose’s work to examine how the nature of growth in previous periods may effect growth in the current period. Employing a panel of all commercially active enterprises in the private (non-government) sector in Sweden over a 10 year period our results indicate that previous organic growth acts as a constraint on organic growth, however, acquisitive growth may act as a catalyst for organic growth. Based on these findings, we suggest extensions Penrose’s to growth theory

    Evaluation of Seat Performance Criteria for Future Rear-end Impact Testing

    Get PDF
    In the past, EEVC WG12 and 20 have evaluated rear-impact dummies and reviewed associated injury criteria and assessment reference values for seat performance evaluations (Hynd et al. 2007 and Hynd and Carroll 2008). The BioRID II was recommended to be used in future legislative dynamic rear-end impact seat performance tests. Recommended injury criteria and assessment reference values to be used with the dummy are however still pending. This is mainly due to the incomplete understanding of the injury site and mechanisms responsible for the symptoms presented after such impacts. This lack of biomechanical data limits the possibility to evaluate any proposed injury criteria and associated reference values. The aim of this study is to address these limitations by comparing crash test dummy parameter values from performed sled tests with real-life accident data. The results are expected to indicate the injury predictability of the complete sled test method, which includes performance criteria, the use of a generic sled acceleration pulse, the use of the BioRID II and its current positioning procedure. Real-life injury risk was calculated for 32 individual car models and for 17 groups of similar seat designs from data provided by Folksam. When grouped data was introduced, i.e. by dividing applicable data into groups with similar seat designs, the reliability of the insurance data was raised, while the dummy measurements remained constant. The number of insurance cases ranges from 32 to 1023 for individual car models and from 132 to 1023 for groups with similar seat designs. Regression coefficients (r2) were calculated and the data presented graphically. Two types of injury risks were used in this study: those that had documented symptoms for more than one month and those that were classified as a permanent medical impairment as the consequence of a rear-end impact. These injury risks were compared to crash test dummy parameter values from sled tests performed with a BioRID II in 16 km/h medium Euro-NCAP pulse. It was found that the analysis of groups of similar seat designs provided the most reliable results. Analysing individual data clearly showed that the insurance cases were too low per seat model to be used in an evaluation of seat performance criteria. In conclusion, the results obtained in the analysis of individual data did not invalidate the results obtained using grouped datasets. This conclusion was based on the observation that the correlations found in the analysis of grouped datasets could exist also for individual car model data. When comparing groups of seats, the analysis showed that the Neck Injury Criterion (NIC), the maximum rearward Occipital Condyle x-displacements in a coordinate system that moves with the T1 and the maximum L1 x-acceleration were the parameters that best predicted the risk of developing permanent medical impairment, and symptoms for more than one month given that the occupant had initial symptoms following a rear-end impact. The maximum rearward head rel. T1 angular displacement, T1 x-acceleration and upper neck shear load (U.N.Fx, head r.w.) were parameters that also could predict the risk of permanent medical impairment and symptoms for more than one month. These results are supported by recent studies. In comparison with a previous report, this study includes additional seat tests data which allowed additional data points to be included in the regression analysis. An expanded insurance claim database, about three times more insurance claims, was included in the analysis, which made the results more reliable. The insurance data was compensated for differences in the definitions of short term symptoms and permanent medical impairment during the accident data sampling period. This reduced errors that could have been introduced by the market share change during the sampling period for the various vehicle models included in this study. In the future, a logistic regression including error estimation that covers all available insurance and test data should be carried out. The advantage of such an analysis would be that data could be included independent of the number of accidents. Another advantage of this is that a larger proportion of the data would be from tests and real life accidents with newer cars than those included in this study. Therefore the recommended parameters to use in seat evaluations would be more suitable for modern car seat systems

    Development and validation of a Renault Mégane finite element model for full-scale pedestrian impact simulations

    Get PDF
    In this report, the development and validation of a Finite Element (FE) vehicle model is presented which is intended for simulation of past full-scale pedestrian experiments with post-mortem human subjects. The model is primarily intended for evaluation of the pedestrian Human Body Model (HBM) “Total HUman Model for Safety” (THUMS) version 4.0 but can also be used for evaluation of other FE-HBM models

    Experimental Animal Models for Studies on the Mechanisms of Blast-Induced Neurotrauma

    Get PDF
    A blast injury is a complex type of physical trauma resulting from the detonation of explosive compounds and has become an important issue due to the use of improvised explosive devices (IED) in current military conflicts. Blast-induced neurotrauma (BINT) is a major concern in contemporary military medicine and includes a variety of injuries that range from mild to lethal. Extreme forces and their complex propagation characterize BINT. Modern body protection and the development of armored military vehicles can be assumed to have changed the outcome of BINT. Primary blast injuries are caused by overpressure waves whereas secondary, tertiary, and quaternary blast injuries can have more varied origins such as the impact of fragments, abnormal movements, or heat. The characteristics of the blast wave can be assumed to be significantly different in open field detonations compared to explosions in a confined space, such an armored vehicle. Important parameters include peak pressure, duration, and shape of the pulse. Reflections from walls and armor can make the prediction of effects in individual cases very complex. Epidemiological data do not contain information of the comparative importance of the different blast mechanisms. It is therefore important to generate data in carefully designed animal models. Such models can be selective reproductions of a primary blast, penetrating injuries from fragments, acceleration movements, or combinations of such mechanisms. It is of crucial importance that the physical parameters of the employed models are well characterized so that the experiments can be reproduced in different laboratory settings. Ideally, pressure recordings should be calibrated by using the same equipment in several laboratories. With carefully designed models and thoroughly evaluated animal data it should be possible to achieve a translation of data between animal and clinical data. Imaging and computer simulation represent a possible link between experiments and studies of human cases. However, in order for mathematical simulations to be completely useful, the predictions will most likely have to be validated by detailed data from animal experiments. Some aspects of BINT can conceivably be studied in vitro. However, factors such as systemic response, brain edema, inflammation, vasospasm, or changes in synaptic transmission and behavior must be evaluated in experimental animals. Against this background, it is necessary that such animal experiments are carefully developed imitations of actual components in the blast injury. This paper describes and discusses examples of different designs of experimental models relevant to BINT

    Female kinematics and muscle responses in lane change and lane change with braking maneuvers

    Get PDF
    Objective: The primary aim of this article is to extensively study female occupant kinematics and muscle activations in vehicle maneuvers potentially occurring in precrash situations and with different seat belt configurations. The secondary aim is to provide validation data for active human body models (AHBMs) of female occupants in representative precrash loading situations. Methods: Front seat female passengers wearing a 3-point seat belt, with either standard or pre-pretensioning functionality, were subjected to multiple autonomously carried-out lane change and lane change with braking maneuvers while traveling at 73 km/h. This article quantifies the head center of gravity and T1 vertebra body (T1) linear and rotational displacements. This article also includes surface electromyography (EMG) data collected from 38 muscles in the neck, torso, and upper and lower extremities, all normalized by maximum voluntary contraction (MVC). The raw EMG data were filtered, rectified, and smoothed. Separate Wilcoxon signed-rank tests were performed on EMG onset and amplitude as well as peak displacements of head and T1 considering 2 paired samples with the belt configuration as an independent variable. Results: Significantly smaller lateral and forward displacements for head and T1 were found with the pre-pretensioner belt versus the standard belt (P <.05). Averaged muscle activity, mainly in the neck, lumbar extensor, and abdominal muscles, increased up to 16% MVC immediately after the vehicle accelerated in the lateral direction. Muscles in the right and left sides of the body displayed differences in activation time and amplitude relative to the vehicle’s lateral motion. For specific muscles, lane changes with the pre-pretensioner belt resulted in earlier muscle activation onsets and significantly smaller activation amplitudes compared to the standard belt (P <.05). Conclusions: The presented results from female passengers complement the previously published results from male passengers subjected to the same loading scenarios. The data provided in this article can be used for validation of AHBMs of female occupants in both sagittal and lateral loading scenarios potentially occurring prior to a crash. Additionally, our results show that a pre-pretensioner belt decreases muscle activation onset and amplitude as well as forward and lateral displacements of head and T1 compared to a standard belt, confirming previously published results

    Data for Evaluation of Crash Test Dummies and Human Body Models: New and past Post Mortem Human Subject Data from Groupement d'Intérêt Economique de Recherches et Etudes PSA-RENAULT; and Volunteer shoulder range-of-motion and stiffness

    Get PDF
    For assessment of their performance and for the development of injury risk functions there is a need for additional biofidelity data. In this report two types of data are made available: Part A - post mortem human subject exposed to various restraints; Part B – volunteer shoulder rang-of-motions. Part A LAB-2002: Load-limiting belt restraints have been present in cars since 1995. An accident study showed the greater effectiveness in thorax injury prevention using a 4 kN load limiter belt with an airbag than using a 6 kN load limiter belt without airbag. Frontal sled crashes were performed using PMHS. Restraint conditions evaluated are 6 kN load-limiting belt and 4 kN load-limiting belt with an airbag. Loads between the occupant and the sled environment were recorded. Various measurements characterize the PMHS behaviour and injuries were noted. LAB-2005: Many studies have reported multiple rib fractures sustained by an Out-of-Position (OOP) driver subjected to a frontal airbag deployment. Two successive phases occur during the bag deployment: punch-out loading of the thorax, followed by a membrane effect. The aim of this study was to investigate the thoracic injuries generated by each phase separately. Tests of nine post-mortem human surrogates were carried out on a static test bench using a driver side airbag module. Three loading configurations were performed: membrane only, punch-out only, and both types combined. The membrane-only tests were performed with the thorax initially positioned at 13, 78 and 128 mm from the plate in order to vary the load magnitude. The punch-out and the combined tests were performed with the thorax initially 8 mm from the module. Accelerometers and angular rate sensors were fixed on the sternum and on the first, fourth, and eighth thoracic vertebrae of the PMHS. Ribs 2 to 6 were instrumented with strain gauges. The reaction force of the bag on the plate was measured using four 2-axis load cells. Results showed that both pure punch-out and pure membrane loading can result in thoracic injuries. However, the rib fracture locations seemed to differ from one type of loading to the other. Moreover, for the same initial distance between the airbag module and the thorax, the injuries were more severe in the combined effect tests than in the pure punch-out or pure membrane. LAB-2008: Ribs of 8 PMHS were equipped with up to 96 strain gauges. In a first series of 3 tests, the subjects were seated upright and their chests were loaded by a 23.4 kg impactor propelled at 4.3 m/s in pure frontal, oblique and pure lateral directions. In a second series of 3 tests, the subjects were loaded by the deployment of an unfolded airbag in the same 3 directions. Part B The shoulder complex is rarely exposed to injuries in frontal and oblique frontal collisions, but influence the belt interaction and as such the thorax compression and head kinematics. The purpose of this study was to establish response requirements for the shoulder complex in terms of range-of-motion and stiffness. Six male volunteers were seated in a rigid seat that simulated a car driver’s posture whilst in a special designed test rig. Loads to the shoulders were applied through the arms, by means of brackets fastened to the elbows, loads rearward were applied by means of a strap around the shoulder complex. Torso movement was blocked by two pre-tensed diagonal belts that were routed close to the neck to avoid excessive clavicle interaction. Shoulders were loaded with increasing load from 0 ̶ 200 N/shoulder at 50 N increments. A test series included four load series: shoulders pulled straight forward, forward-upward, upward and rearward. Each volunteer was exposed to three tests. Shoulder positions relative to the spine were obtained from film analysis. Photo markers were mounted on the volunteer’s skin: head, posterior tip of acromion process, chest, T1 and T4. The right and left acromion relative to T1 displacements were used to calculate the shoulder range-of-motion in three directions. Belt loads and seat back loads were recorded. Average resultant volunteers’ acromion relative to T1 range-of-motion, at the maximum load, was 55 mm for forward loads, 69 mm for forward-upward loads, 73 for mm upward loads and 50 mm for rearward loads. The volunteers provided measurements with reasonable repeatability. The volunteers curved their spines only slightly when shoulder loads were applied. Hence, shoulder complex motion was successfully isolated and results reflect pure shoulder relative to chest motions. The applied loads were lower than those commonly seen in frontal crashes, however the shoulder is highly mobile and its response to loads is largely dependent on muscle characteristics. As such studies using volunteers may be complimentary to tests with post mortem human subjects

    Predicting pelvis geometry using a morphometric model with overall anthropometric variables

    Get PDF
    Pelvic fractures have been identified as the second most common AIS2+ injury in motor vehicle crashes, with the highest early mortality rate compared to other orthopaedic injuries. Further, the risk is associated with occupant sex, age, stature and body mass index (BMI). In this study, clinical pelvic CT scans from 132 adults (75 females, 57 males) were extracted from a patient database. The population shape variance in pelvis bone geometry was studied by Sparse Principal Component Analysis (SPCA) and a morphometric model was developed by multi- variate linear regression using overall anthropometric variables (sex, age, stature, BMI). In the analysis, SPCA identified 15 principal components (PCs) describing 83.6% of the shape variations. Eight of these were signifi- cantly captured (α < 0.05) by the morphometric model, which predicted 29% of the total variance in pelvis geometry. The overall anthropometric variables were significantly related to geometrical features primarily in the inferior-anterior regions while being unable to significantly capture local sacrum features, shape and position of ASIS and lateral tilt of the iliac wings. In conclusion, a new detailed morphometric model of the pelvis bone demonstrated that overall anthropometric variables account for only 29% of the variance in pelvis geometry. Furthermore, variations in the superior-anterior region of the pelvis, with which the lap belt is intended to interact, were not captured. Depending on the scenario, shape variations not captured by overall anthropometry could have important implications for injury prediction in traffic safety analysis

    Dynamic Spatial Tuning Patterns of Shoulder Muscles with Volunteers in a Driving Posture

    Get PDF
    Computational human body models (HBMs) of drivers for pre-crash simulations need active shoulder muscle control, and volunteer data are lacking. The goal of this paper was to build shoulder muscle dynamic spatial tuning patterns, with a secondary focus to present shoulder kinematic evaluation data. 8M and 9F volunteers sat in a driver posture, with their torso restrained, and were exposed to upper arm dynamic perturbations in eight directions perpendicular to the humerus. A dropping 8-kg weight connected to the elbow through pulleys applied the loads; the exact timing and direction were unknown. Activity in 11 shoulder muscles was measured using surface electrodes, and upper arm kinematics were measured with three cameras. We found directionally specific muscle activity and presented dynamic spatial tuning patterns for each muscle separated by sex. The preferred directions, i.e. the vector mean of a spatial tuning pattern, were similar between males and females, with the largest difference of 31° in the pectoralis major muscle. Males and females had similar elbow displacements. The maxima of elbow displacements in the loading plane for males was 189 ± 36 mm during flexion loading, and for females, it was 196 ± 36 mm during adduction loading. The data presented here can be used to design shoulder muscle controllers for HBMs and evaluate the performance of shoulder models

    The influence of car passengers’ sitting postures in intersection crashes

    Get PDF
    Car passengers are frequently sitting in non-nominal postures and are able to perform a wide range of activities since they are not limited by tasks related to vehicle control, contrary to drivers. The anticipated introduction of Autonomous Driven vehicles could allow “drivers” to adopt similar postures and being involved in the same activities as passengers, allowing them a similar set of non-nominal postures. Therefore, the need to investigate the effects of non-nominal occupant sitting postures during relevant car crash events is becoming increasingly important. This study aims to investigate the effect of different postures of passengers in the front seat of a car on kinematic and kinetic responses during intersection crashes. A Human Body Model (HBM) was positioned in a numerical model of the front passenger seat of a midsize Sports Utility Vehicle (SUV) in a total of 35 postures, including variations to the lower and upper extremities, torso, and head postures. Three crash configurations, representative of predicted urban intersection crashes, were assessed in a simulation study; two side impacts, a near-side and a far-side, respectively, and a frontal impact. The occupant kinematics and internal loads were analyzed, and any deviation between the nominal and altered posture responses were quantified using cross-correlation of signals to highlight the most notable variations. Posture changes to the lower extremities had the largest overall influence on the lower extremities, pelvis, and whole-body responses for all crash configurations. In the frontal impact, crossing the legs allowed for the highest pelvis excursions and rotations, which affected the whole-body response the most. In the two side-impacts, leaning the torso in the coronal plane affected the torso and head kinematics by changing the interaction with the vehicle\u27s interior. Additionally, in far-side impacts supporting the upper extremity on the center console resulted in increased torso excursions. Moreover, the response of the upper extremities was consistently sensitive to posture variations of all body regions
    corecore