43 research outputs found

    Depletion of a Bose-Einstein condensate by laser-iduced dipole-dipole interactions

    Full text link
    We study a gaseous Bose-Einstein condensate with laser-induced dipole-dipole interactions using the Hartree-Fock-Bogoliubov theory within the Popov approximation. The dipolar interactions introduce long-range atom-atom correlations, which manifest themselves as increased depletion at momenta similar to that of the laser wavelength, as well as a "roton" dip in the excitation spectrum. Surprisingly, the roton dip and the corresponding peak in the depletion are enhanced by raising the temperature above absolute zero.Comment: 10 pages, 6 figure

    Sequence of Potentials Interpolating between the U(5) and E(5) Symmetries

    Full text link
    It is proved that the potentials of the form β2n\beta^{2n} (with nn being integer) provide a ``bridge'' between the U(5) symmetry of the Bohr Hamiltonian with a harmonic oscillator potential (occuring for n=1n=1) and the E(5) model of Iachello (Bohr Hamiltonian with an infinite well potential, materialized for infinite nn). Parameter-free (up to overall scale factors) predictions for spectra and B(E2) transition rates are given for the potentials β4\beta^4, β6\beta^6, β8\beta^8, corresponding to R4=E(4)/E(2)R_4=E(4)/E(2) ratios of 2.093, 2.135, 2.157 respectively, compared to the R4R_4 ratios 2.000 of U(5) and 2.199 of E(5). Hints about nuclei showing this behaviour, as well as about potentials ``bridging'' the E(5) symmetry with O(6) are briefly discussed. A note about the appearance of Bessel functions in the framework of E(n) symmetries is given as a by-product.Comment: LaTeX, 17 pages, 9 postscript figure

    On the breaking of a plasma wave in a thermal plasma: I. The structure of the density singularity

    Full text link
    The structure of the singularity that is formed in a relativistically large amplitude plasma wave close to the wavebreaking limit is found by using a simple waterbag electron distribution function. The electron density distribution in the breaking wave has a typical "peakon" form. The maximum value of the electric field in a thermal breaking plasma is obtained and compared to the cold plasma limit. The results of computer simulations for different initial electron distribution functions are in agreement with the theoretical conclusions.Comment: 21 pages, 12 figure

    Constraints on the Electrical Charge Asymmetry of the Universe

    Full text link
    We use the isotropy of the Cosmic Microwave Background to place stringent constraints on a possible electrical charge asymmetry of the universe. We find the excess charge per baryon to be qep<1026eq_{e-p}<10^{-26}e in the case of a uniform distribution of charge, where ee is the charge of the electron. If the charge asymmetry is inhomogeneous, the constraints will depend on the spectral index, nn, of the induced magnetic field and range from qep<5×1020eq_{e-p}<5\times 10^{-20}e (n=2n=-2) to qep<2×1026eq_{e-p}<2\times 10^{-26}e (n2n\geq 2). If one could further assume that the charge asymmetries of individual particle species are not anti-correlated so as to cancel, this would imply, for photons, qγ<1035eq_\gamma< 10^{-35}e; for neutrinos, qν<4×1035eq_\nu<4\times10^{-35}e; and for heavy (light) dark matter particles qdm<4×1024eq_{\rm dm}<4\times10^{-24}e (qdm<4×1030eq_{\rm dm}<4\times10^{-30}e).Comment: New version to appear in JCA

    Circular String-Instabilities in Curved Spacetime

    Full text link
    We investigate the connection between curved spacetime and the emergence of string-instabilities, following the approach developed by Loust\'{o} and S\'{a}nchez for de Sitter and black hole spacetimes. We analyse the linearised equations determining the comoving physical (transverse) perturbations on circular strings embedded in Schwarzschild, Reissner-Nordstr\"{o}m and de Sitter backgrounds. In all 3 cases we find that the "radial" perturbations grow infinitely for r0r\rightarrow 0 (ring-collapse), while the "angular" perturbations are bounded in this limit. For rr\rightarrow\infty we find that the perturbations in both physical directions (perpendicular to the string world-sheet in 4 dimensions) blow up in the case of de Sitter space. This confirms results recently obtained by Loust\'{o} and S\'{a}nchez who considered perturbations around the string center of mass.Comment: 24 pages Latex + 2 figures (not included). Observatoire de Paris, Meudon No. 9305

    Strings Propagating in the 2+1 Dimensional Black Hole Anti de Sitter Spacetime

    Full text link
    We study the string propagation in the 2+1 black hole anti de Sitter background (2+1 BH-ADS). We find the first and second order fluctuations around the string center of mass and obtain the expression for the string mass. The string motion is stable, all fluctuations oscillate with real frequencies and are bounded, even at r=0.r=0. We compare with the string motion in the ordinary black hole anti de Sitter spacetime, and in the black string background, where string instabilities develop and the fluctuations blow up at r=0.r=0. We find the exact general solution for the circular string motion in all these backgrounds, it is given closely and completely in terms of elliptic functions. For the non-rotating black hole backgrounds the circular strings have a maximal bounded size rm,r_m, they contract and collapse into r=0.r=0. No indefinitely growing strings, neither multi-string solutions are present in these backgrounds. In rotating spacetimes, both the 2+1 BH-ADS and the ordinary Kerr-ADS, the presence of angular momentum prevents the string from collapsing into r=0.r=0. The circular string motion is also completely solved in the black hole de Sitter spacetime and in the black string background (dual of the 2+1 BH-ADS spacetime), in which expanding unbounded strings and multi-string solutions appear.Comment: Latex, 54 pages + 2 tables and 4 figures (not included). PARIS-DEMIRM 94/01

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research
    corecore