24,067 research outputs found

    How Homogenous are Currency Crises? A Panel Study Using Multiple-Response Models

    Get PDF
    This paper presents evidence that currency episodes display heterogeneity in terms of their evolution, their impact on the inflicted economy and their links with financial, political and macroeconomic fundamentals. Limited-dependent variable models for ordered and unordered outcomes along with their heteroskedastic and random effects extensions are applied to a large panel of data comprising 40 years of monthly observations on 23 developed countries. Heterogeneity, complemented by indications of self-fulfilling expectations and noise, suggest that time and region specific predictive approaches and policy responses are more useful than trying to base analysis and policy decisions on more general patterns. Results are established with formal specification tests.Money demand; Currency crises; speculative pressure; exchange rate; devaluation; Limited-dependent variable models

    Unitary ambiguity in the extraction of the E2/M1 ratio for the γN↔Δ\gamma N\leftrightarrow\Delta transition

    Full text link
    The resonant electric quadrupole amplitude in the transition γN↔Δ(1232)\gamma N\leftrightarrow\Delta(1232) is of great interest for the understanding of baryon structure. Various dynamical models have been developed to extract it from the corresponding photoproduction multipole of pions on nucleons. It is shown that once such a model is specified, a whole class of unitarily equivalent models can be constructed, all of them providing exactly the same fit to the experimental data. However, they may predict quite different resonant amplitudes. Therefore, the extraction of the E2/M1(γN↔Δ\gamma N\leftrightarrow\Delta) ratio (bare or dressed) which is based on a dynamical model using a largely phenomenological πN\pi N interaction is not unique.Comment: 10 pages revtex including 4 postscript figure

    A predictive formulation of the Nambu--Jona-Lasinio model

    Full text link
    A novel strategy to handle divergences typical of perturbative calculations is implemented for the Nambu--Jona-Lasinio model and its phenomenological consequences investigated. The central idea of the method is to avoid the critical step involved in the regularization process, namely the explicit evaluation of divergent integrals. This goal is achieved by assuming a regularization distribution in an implicit way and making use, in intermediary steps, only of very general properties of such regularization. The finite parts are separated of the divergent ones and integrated free from effects of the regularization. The divergent parts are organized in terms of standard objects which are independent of the (arbitrary) momenta running in internal lines of loop graphs. Through the analysis of symmetry relations, a set of properties for the divergent objects are identified, which we denominate consistency relations, reducing the number of divergent objects to only a few ones. The calculational strategy eliminates unphysical dependencies of the arbitrary choices for the routing of internal momenta, leading to ambiguity-free, and symmetry-preserving physical amplitudes. We show that the imposition of scale properties for the basic divergent objects leads to a critical condition for the constituent quark mass such that the remaining arbitrariness is removed. The model become predictive in the sense that its phenomenological consequences do not depend on possible choices made in intermediary steps. Numerical results are obtained for physical quantities at the one-loop level for the pion and sigma masses and pion-quark and sigma-quark coupling constants.Comment: 38 pages, 1 figure, To appear in Phy.Rev.
    • …
    corecore