1,935 research outputs found
Determination of S17(0) from published data
The experimental landscape for the 7Be+p radiative capture reaction is
rapidly changing as new high precision data become available. We present an
evaluation of existing data, detailing the treatment of systematic errors and
discrepancies, and show how they constrain the astrophysical S factor (S17),
independent of any nuclear structure model. With theoretical models robustly
determining the behavior of the sub-threshold pole, the extrapolation error can
be reduced and a constraint placed on the slope of S17. Using only radiative
capture data, we find S17(0) = 20.7 +/- 0.6 (stat) +/- 1.0 (syst) eV b if data
sets are completely independent, while if data sets are completely correlated
we find S17(0) = 21.4 +/- 0.5 (stat) +/- 1.4 (syst) eV b. The truth likely lies
somewhere in between these two limits. Although we employ a formalism capable
of treating discrepant data, we note that the central value of the S factor is
dominated by the recent high precision data of Junghans et al., which imply a
substantially higher value than other radiative capture and indirect
measurements. Therefore we conclude that further progress will require new high
precision data with a detailed error budget.Comment: 10 pages, 1 figure published versio
Hindrance of Heavy-ion Fusion at Extreme Sub-Barrier Energies in Open-shell Colliding Systems
The excitation function for the fusion-evaporation reaction 64Ni+100Mo has
been measured down to a cross-section of ~5 nb. Extensive coupled-channels
calculations have been performed, which cannot reproduce the steep fall-off of
the excitation function at extreme sub-barrier energies. Thus, this system
exhibits a hindrance for fusion, a phenomenon that has been discovered only
recently. In the S-factor representation introduced to quantify the hindrance,
a maximum is observed at E_s=120.6 MeV, which corresponds to 90% of the
reference energy E_s^ref, a value expected from systematics of closed-shell
systems. A systematic analysis of Ni-induced fusion reactions leading to
compound nuclei with mass A=100-200 is presented in order to explore a possible
dependence of the fusion hindrance on nuclear structure.Comment: 10 pages, 9 figures, Submitted to Phys. Rev.
Role of dynamical particle-vibration coupling in reconciliation of the puzzle for spherical proton emitters
It has been observed that decay rate for proton emission from
single particle state is systematically quenched compared with the prediction
of a one dimensional potential model although the same model successfully
accounts for measured decay rates from and states. We
reconcile this discrepancy by solving coupled-channels equations, taking into
account couplings between the proton motion and vibrational excitations of a
daughter nucleus. We apply the formalism to proton emitting nuclei
Re to show that there is a certain range of parameter set of the
excitation energy and the dynamical deformation parameter for the quadrupole
phonon excitation which reproduces simultaneously the experimental decay rates
from the 2, 3 and 1 states in these nuclei.Comment: RevTex, 12 pages, 4 eps figure
Modal Approach to Casimir Forces in Periodic Structures
We present a modal approach to calculate finite temperature Casimir
interactions between two periodically modulated surfaces. The scattering
formula is used and the reflection matrices of the patterned surfaces are
calculated decomposing the electromagnetic field into the natural modes of the
structures. The Casimir force gradient from a deeply etched silicon grating is
evaluated using the modal approach and compared to experiment for validation.
The Casimir force from a two dimensional periodic structure is computed and
deviations from the proximity force approximation examined.Comment: 13 pages, 7 figure
S17(0) Determined from the Coulomb Breakup of 83 MeV/nucleon 8B
A kinematically complete measurement was made of the Coulomb dissociation of
8B nuclei on a Pb target at 83 MeV/nucleon. The cross section was measured at
low relative energies in order to infer the astrophysical S factor for the
7Be(p,gamma)8B reaction. A first-order perturbation theory analysis of the
reaction dynamics including E1, E2, and M1 transitions was employed to extract
the E1 strength relevant to neutrino-producing reactions in the solar interior.
By fitting the measured cross section from Erel = 130 keV to 400 keV, we find
S17(0) = 17.8 (+1.4, -1.2) eV b
Social Media and Dentistry
Numerous social media platforms are accessible to healthcare professionals and to patients. The aim of this study was to determine the role of social media platforms in the academic life of undergraduate and postgraduate dental students, and general dentists and specialists working in an academic setting. A cross-sectional survey was conducted targeting 4th and 5th year dentistry students, postgraduate clinical assistants, qualified dentists, and specialists working at an Oral Health Centre. The survey questions focused on the role of social media sites in the academic setting, and how these can be used to interact on a professional basis in sharing knowledge efficiently and for teaching, as a marketing tool and the ethics related to its use. Most participants appreciated the use of social media to share and receive information for educational purposes. They indicated that online communication increases the spread of information and knowledge efficiently and timeously. They also specified taking advantage of this efficient spread amongst the population as a marketing tool to gain patients. Though there are some individuals who do not quite agree and have suspicions for ethical or personal reasons, and they explained this by indicating that once something is posted online it cannot be removed. The study concluded that the use of social media in dentistry has positive and negative aspects, thus the hesitancy to use it and suspicions expressed by participants. Information placed online should be closely monitored even after having received permission to do so
Lifetimes of states in 19Ne above the 15 O + alpha breakup threshold
The 15O(alpha,gamma)19Ne reaction plays a role in the ignition of Type I
x-ray bursts on accreting neutron stars. The lifetimes of states in 19Ne above
the 15O + alpha threshold of 3.53 MeV are important inputs to calculations of
the astrophysical reaction rate. These levels in 19Ne were populated in the
3He(20Ne,alpha)19Ne reaction at a 20Ne beam energy of 34 MeV. The lifetimes of
six states above the threshold were measured with the Doppler shift attenuation
method (DSAM). The present measurements agree with previous determinations of
the lifetimes of these states and in some cases are considerably more precise
Evaluation of Modern 3He(alpha,gamma)7Be Data
In both the Sun and the early universe, the 3He(alpha,gamma)7Be reaction
plays a key role. The rate of this reaction is the least certain nuclear input
needed to calculate both the primordial 7Li abundance in big bang
nucleosynthesis (BBN) and the solar neutrino flux. Taking advantage of several
recent highly precise experiments, we analyse modern 3He(alpha,gamma)7Be data
using a robust and minimally model dependent approach capable of handling
discrepant data sets dominated by systematic rather than statistical errors. We
find S34(0)=0.580 pm 0.043(0.054) keV b at the 68.3(95.4)% confidence level.Comment: 13 pages, 5 figure
Measurement of the 18Ne(a,p_0)21Na reaction cross section in the burning energy region for X-ray bursts
The 18Ne(a,p)21Na reaction provides one of the main HCNO-breakout routes into
the rp-process in X-ray bursts. The 18Ne(a,p_0)21Na reaction cross section has
been determined for the first time in the Gamow energy region for peak
temperatures T=2GK by measuring its time-reversal reaction 21Na(p,a)18Ne in
inverse kinematics. The astrophysical rate for ground-state to ground-state
transitions was found to be a factor of 2 lower than Hauser-Feshbach
theoretical predictions. Our reduced rate will affect the physical conditions
under which breakout from the HCNO cycles occurs via the 18Ne(a,p)21Na
reaction.Comment: 5 pages, 3 figures, accepted for publication on Physical Review
Letter
- …