19 research outputs found

    SEntiMoji: An Emoji-Powered Learning Approach for Sentiment Analysis in Software Engineering

    Full text link
    Sentiment analysis has various application scenarios in software engineering (SE), such as detecting developers' emotions in commit messages and identifying their opinions on Q&A forums. However, commonly used out-of-the-box sentiment analysis tools cannot obtain reliable results on SE tasks and the misunderstanding of technical jargon is demonstrated to be the main reason. Then, researchers have to utilize labeled SE-related texts to customize sentiment analysis for SE tasks via a variety of algorithms. However, the scarce labeled data can cover only very limited expressions and thus cannot guarantee the analysis quality. To address such a problem, we turn to the easily available emoji usage data for help. More specifically, we employ emotional emojis as noisy labels of sentiments and propose a representation learning approach that uses both Tweets and GitHub posts containing emojis to learn sentiment-aware representations for SE-related texts. These emoji-labeled posts can not only supply the technical jargon, but also incorporate more general sentiment patterns shared across domains. They as well as labeled data are used to learn the final sentiment classifier. Compared to the existing sentiment analysis methods used in SE, the proposed approach can achieve significant improvement on representative benchmark datasets. By further contrast experiments, we find that the Tweets make a key contribution to the power of our approach. This finding informs future research not to unilaterally pursue the domain-specific resource, but try to transform knowledge from the open domain through ubiquitous signals such as emojis.Comment: Accepted by the 2019 ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2019). Please include ESEC/FSE in any citation

    Efficient unsupervised discovery of word categories using symmetric patterns and high frequency words

    No full text
    We present a novel approach for discovering word categories, sets of words sharing a significant aspect of their meaning. We utilize meta-patterns of highfrequency words and content words in order to discover pattern candidates. Symmetric patterns are then identified using graph-based measures, and word categories are created based on graph clique sets. Our method is the first pattern-based method that requires no corpus annotation or manually provided seed patterns or words. We evaluate our algorithm on very large corpora in two languages, using both human judgments and WordNet-based evaluation. Our fully unsupervised results are superior to previous work that used a POS tagged corpus, and computation time for huge corpora are orders of magnitude faster than previously reported
    corecore