24 research outputs found
Study of Processes Influencing Short-Lived Climate Forcers/Pollutants (Black Carbon and Ozone) Variability in the Himalayas
South Asia and the Himalayas are considered among the worldwide âhot spotsâ for the climate impacts of air pollution. Among the atmospheric pollutants are the short-lived climate forcers/pollutants (SLCF/P), i.e., those atmospheric substances characterized by short lifetimes, with harmful effects on climate, ecosystems and human health. The high levels of the SLCF/P derive from a variety of factors, both of anthropogenic and natural origin. In this thesis, several processes affecting the variability of two key SLCF/P (i.e., black carbon, BC, and tropospheric ozone, O3) in the southern Himalayas are investigated and discussed. The characterization of one of the âhot spotsâ for air pollution in the Himalayan foothills, i.e., the Kathmandu Valley, is given, by analyzing BC and O3 variability at the Paknajol urban measurement site, over February 2013âJanuary 2014. Since the persistent poor air quality conditions of the valley could affect a broader area, up to the high Himalayan environment, the specific role of air-mass transport from the planetary boundary layer (PBL) over the Himalayan foothills to the southern Himalayas is investigated, by comparing BC and O3 concentrations at Paknajol and at the high altitude WMO/GAW global station Nepal Climate Observatory-Pyramid (5079 m a.s.l.). Results show that 50% and 65% of the BC and O3 variability at NCO-P can be explained by PBL variations occurring over Kathmandu, in days (9% of the period) in which air-mass transport between the two measurement sites is observed. Lastly, the influence of a natural process at NCO-P, i.e., stratospheric intrusions, is assessed. The application of the Stratosphere-to-Troposphere Exchange Flux tool (STEFLUX), a novel methodology based on the trajectories from the ERA-Interim reanalysis dataset, indicates that 13% of the 2006â2013 period at NCO-P was affected by this natural phenomenon, resulting in a significant change in O3 and BC concentrations at the measurement site
An Assessment of Stratospheric Intrusions in Italian Mountain Regions Using STEFLUX
The Mediterranean basin is considered a global hot-spot region for climate change and air quality, especially concerning summer-time ozone (O3). Previous investigations indicated that the Mediterranean basin is a preferred region for stratosphere-to-troposphere exchange (STE) and deep stratospheric intrusion (SI) events. The Lagrangian tool STEFLUX, based on a STE climatology that uses the ERA Interim data, was hereby used to diagnose the occurrence of deep SI events in four mountain regions over the Italian peninsula, spanning from the Alpine region to the southern Apennines. By using near-surface O3 and relative humidity (RH) observations at three high-mountain observatories, we investigated the performance of STEFLUX in detecting deep SI events. Both experimental and STEFLUX detections agreed in describing the seasonal cycle of SI occurrence. Moreover, STEFLUX showed skills in detecting "long-lasting" SI events, especially in the Alps and in the northern Apennines. By using STEFLUX, we found positive tendencies in the SI occurrence during 1979â2017. However, in contrast to similar studies carried out in the Alpine region, the negative long-term (1996â2016) trend of O3 in the northern Apennines did not appear to be related to the SI's variability
Wet deposition at the base of Mt Everest: Seasonal evolution of the chemistry and isotopic composition
The chemistry of wet deposition was investigated during 2012â2014 at the Pyramid International Laboratory in the Upper Khumbu Valley, Nepal, at 5050 m a.s.l., within the Global Atmosphere Watch (GAW) programme. The main hydro-chemical species and stable isotopes of the water molecule were determined for monsoon rain (JulyâSeptember) and snow samples (OctoberâJune). To evaluate the synoptic-scale variability of air masses reaching the measurement site, 5 day back-trajectories were computed for the sampling period. Ion concentrations in precipitation during the monsoon were low suggesting that they represent global regional background concentrations. The associations between ions suggested that the principal sources of chemical species were marine aerosols, rock and soil dust, and fossil fuel combustion. Most chemical species exhibited a pattern during the monsoon, with maxima at the beginning and at the end of the season, partially correlated with the precipitation amount. Snow samples exhibited significantly higher concentrations of chemical species, compared to the monsoon rainfall observations. Particularly during 2013, elevated concentrations of NO3â, SO42â and NH4+ were measured in the first winter snow event, and in May at the end of the pre-monsoon season. The analysis of large-scale circulation and wind regimes as well as atmospheric composition observations in the region indicates the transport of polluted air masses from the Himalayan foothills and Indian sub-continent up to the Himalaya region. During the summer monsoon onset period, the greater values of pollutants can be attributed to air-mass transport from the planetary boundary layer (PBL) of the Indo-Gangetic plains. Isotopic data confirm that during the monsoon period, precipitation occurred from water vapor that originated from the Indian Ocean and the Bay of Bengal; by contrast during the non-monsoon period, an isotopic signature of more continental origin appeared, indicating that the higher recorded NO3â and SO42â concentrations could be ascribed to a change in air circulation patterns. A comparison of recent monsoon deposition chemistry with data from the 1990's shows similar levels of contaminants in the rainfall. However, non-monsoon deposition can be significant, as it largely contributed to the ion wet deposition fluxes for all analyzed species in 2013
Negative ozone anomalies at a high mountain site in northern Italy during 2020: a possible role of COVID-19 lockdowns?
Several studies investigated the possible impacts of the restriction measures related to the containment of the spread of the COrona VIrus Disease (COVID-19) to atmospheric ozone (O3) at global, regional, and local scales during 2020. O3 is a secondary pollutant with adverse effects on population health and ecosystems and with negative impacts on climate, acting as greenhouse gas. Most of these studies focused on spring 2020 (i.e. MarchâMay) and on observations in the planetary boundary layer (PBL), mostly in the vicinity of urban agglomerates. Here, we analyzed the variability of O3 above the PBL of northern Italy in 2020 by using continuous observations carried out at a high mountain WMO/GAW global station in Italy (Mt. CimoneâCMN; 44°12' N, 10°42' E, 2165 m a.s.l.). Low O3 monthly anomalies were observed during spring (MAM) and summer (JJA), when periods of low O3 intertwined with periods with higher O3, within climatological ranges. A similar variability was observed for O3 precursors like NO2 and 15 anthropogenic non-methane volatile organic carbons, but the systematic O3 anomalies were not reflected in these variables. The analysis of meteorological variables and diel O3 cycles did not suggest major changes in the vertical transport related to the thermal circulation system in the mountain area. The analysis of five days back-trajectories suggested that the observed O3 anomalies cannot be explained by differences in the synoptic-scale circulation with respect to the previous years alone. On the other hand, the characterization of two transport patterns (i.e. air masses from the regional PBL or from the free troposphere) and the analysis of back-trajectories suggested an important contribution of transport from the continental PBL during the periods with the lowest O3 at CMN. When proxies of air mass transport from the regional PBL are considered, a lower NOx content was pointed out with respect to the previous years, suggesting a lower O3 production in a NOx-limited atmosphere. Our study suggested for the first time that, during MAM and JJA 2020, the reduced anthropogenic emissions related to the COVID-19 restrictions lowered the amount of this short-lived climate forcer/pollutant at remote locations above the PBL over northern Italy. This work suggests the importance of limiting anthropogenic precursor emissions for decreasing the O3 amount at remote locations and in upper atmospheric layers
Analysis of multi-year near-surface ozone observations at the WMO/GAW "Concordia" station (75°06âČS, 123°20âČE, 3280 m a.s.l. â Antarctica)
Abstract This work focuses on the near-surface O3 variability over the eastern Antarctic Plateau. In particular, eight years (2006â2013) of continuous observations at the WMO/GAW contributing station "Concordia" (Dome CâDMC: 75°06âČS, 123°20âČE, 3280âŻm) are presented, in the framework of the Italian Antarctic Research Programme (PNRA). First, the characterization of seasonal and diurnal O3 variability at DMC is provided. Then, for the period of highest data coverage (2008â2013), we investigated the role of specific atmospheric processes in affecting near-surface summer O3 variability, when O3 enhancement events (OEEs) are systematically observed at DMC (average monthly frequency peaking up to 60% in December). As deduced by a statistical selection methodology, these OEEs are affected by a significant interannual variability, both in their average O3 values and in their frequency. To explain part of this variability, we analyzed OEEs as a function of specific atmospheric variables and processes: (i) total column of O3 (TCO) and UV-A irradiance, (ii) long-range transport of air masses over the Antarctic Plateau (by Lagrangian back-trajectory analysis â LAGRANTO), (iii) occurrence of "deep" stratospheric intrusion events (by using the Lagrangian tool STLEFLUX). The overall near-surface O3 variability at DMC is controlled by a day-to-day pattern, which strongly points towards a dominating influence of processes occurring at "synoptic" scales rather than "local" processes. Even if previous studies suggested an inverse relationship between OEEs and TCO, we found a slight tendency for the annual frequency of OEEs to be higher when TCO values are higher over DMC. The annual occurrence of OEEs at DMC seems related to the total time spent by air masses over the Antarctic plateau before their arrival to DMC, suggesting the accumulation of photochemically-produced O3 during the transport, rather than a more efficient local production. Moreover, the identification of recent (i.e., 4-day old) stratospheric intrusion events by STEFLUX suggested only a minor influence (up to 3% of the period, in November) of "deep" events on the variability of near-surface summer O3 at DMC
Fingerprints of the COVID-19 economic downturn and recovery on ozone anomalies at high-elevation sites in North America and western Europe
With a few exceptions, most studies on tropospheric ozone (O3) variability during and following
the COrona VIrus Disease (COVID-19) economic downturn focused on high-emission regions or urban environments. In this work, we investigated the impact of the societal restriction measures during the COVID-19
pandemic on surface O3 at several high-elevation sites across North America and western Europe. Monthly O3
anomalies were calculated for 2020 and 2021, with respect to the baseline period 2000â2019, to explore the
impact of the economic downturn initiated in 2020 and its recovery in 2021. In total, 41 high-elevation sites
were analyzed: 5 rural or mountaintop stations in western Europe, 19 rural sites in the western US, 4 sites in
the western US downwind of highly polluted source regions, and 4 rural sites in the eastern US, plus 9 mountaintop or high-elevation sites outside Europe and the United States to provide a âglobalâ reference. In 2020,
the European high-elevation sites showed persistent negative surface O3 anomalies during spring (MarchâMay,
i.e., MAM) and summer (JuneâAugust, i.e., JJA), except for April. The pattern was similar in 2021, except for
June. The rural sites in the western US showed similar behavior, with negative anomalies in MAM and JJA 2020
(except for August) and MAM 2021.The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation program (grant agreement no. 654109). Surface O3 measurements at Summit are made possible via the US National Science Foundation Office of Polar Programs and their contract with Battelle Arctic Research Operations (contract no. 49100420C0001). Owen R. Cooper, Kai-Lan Chang, Irina Petropavlovskikh, and Peter Effertz were supported by a NOAA cooperative agreement (grant no. NA22OAR4320151). The publication costs of this research have been partially supported by the European Commission under the Horizon 2020 research and innovation framework program through ACTMO-ACCESS Integrating Activity (grant agreement no. 101008004)
Increasing the maturity of measurements of essential climate variables (ECVs) at Italian atmospheric WMO/GAW observatories by implementing automated data elaboration chains
In the framework of the National Project of Interest NextData, we developed automatic procedures for the flagging and formatting of trace gases, atmospheric aerosols and meteorological data to be submitted to the World Data Centers (WDCs) of the Global Atmosphere Watch program of the World Meteorological Organization (WMO/GAW). In particular, the atmospheric Essential Climate Variables (ECVs) covered in this work are observations of near-surface trace gas concentrations, aerosol properties and meteorological variables, which are under the umbrella of the World Data Center for Greenhouse Gases (WDCGG), the World Data Center for Reactive Gases, and the World Data Center for Aerosol (WDCRG and WDCA). We developed an overarching processing chain to create a number of data products (data files and reports) starting from the raw data, finally contributing to increase the maturity of these measurements. To this aim, we implemented specific routines for data filtering, flagging, format harmonization, and creation of data products, useful for detecting instrumental problems, particular atmospheric events and quick data dissemination towards stakeholders or citizens. Currently, the automatic data processing is active for a subset of ECVs at 5 measurement sites in Italy. The system represents a valuable tool to facilitate data originators towards a more efficient data production. Our effort is expected to accelerate the process of data submission to WMO/GAW or to other reference data centers or repositories. Moreover, the adoption of automatic procedures for data flagging and data correction allows to keep track of the process that led to the final validated data, and makes data evaluation and revisions more efficient by improving the traceability of the data production process
Historical and recent sea level rise and land subsidence in Marina di Ravenna, northern Italy
The regions facing the northern Adriatic Sea are particularly vulnerable to sea-level rise. Several trade ports are located there, and the area is important from social and economical viewpoints. Since tourism and cultural heritage are a significant source of income, an increase in sea-level could hinder the development of these regions. One of the longest sea-level time series in the northern Adriatic, which goes back to the late 1880s, has been recorded at Marina di Ravenna, in Emilia-Romagna region. The record is anomalous, showing a rate of increase that largely exceeds that observed in nearby stations. During the last few decades, geodetic campaigns based on geometric high precision leveling, SAR interferometry, and GPS have monitored the Ravenna area. In this work, tide gauge observations are merged with yet unpublished geodetic data, aiming at a coherent interpretation of vertical land movements. We confirm that land subsidence is the major cause of relative sea-level change at Marina di Ravenna, at least during the period allowing for a quantitative analysis (1990-2011). The rate of absolute sea-level change (2.2\ub11.3 mm yr 121 during the same time period), given by the difference between the rate of relative sea-level change and the rate of subsidence, is consistent with the rate of absolute sea-level change observed by altimetry in the northern Adriatic Sea