59 research outputs found

    Interpreting Quantum Discord in Quantum Metrology

    Get PDF
    Multipartite quantum systems show properties which do not admit a classical explanation. In particular, even nonentangled states can enjoy a kind of quantum correlations called quantum discord. I discuss some recent results on the role of quantum discord in metrology. Given an interferometric phase estimation protocol where the Hamiltonian is initially unknown to the experimentalist, the quantum discord of the probe state quantifies the minimum precision of the estimation. This provides a physical interpretation to a widely investigated information-theoretic quantity.Comment: Contribution to the conference "DICE 2014: Spacetime - Matter - Quantum Mechanics

    Witnessing multipartite entanglement by detecting asymmetry

    Full text link
    The characterization of quantum coherence in the context of quantum information theory and its interplay with quantum correlations is currently subject of intense study. Coherence in an Hamiltonian eigenbasis yields asymmetry, the ability of a quantum system to break a dynamical symmetry generated by the Hamiltonian. We here propose an experimental strategy to witness multipartite entanglement in many-body systems by evaluating the asymmetry with respect to an additive Hamiltonian. We test our scheme by simulating asymmetry and entanglement detection in a three-qubit GHZ-diagonal state.Comment: more examples and discussion in the open access published versio

    Characterizing Nonclassical Correlations via Local Quantum Uncertainty

    Get PDF
    Quantum mechanics predicts that measurements of incompatible observables carry a minimum uncertainty which is independent of technical deficiencies of the measurement apparatus or incomplete knowledge of the state of the system. Nothing yet seems to prevent a single physical quantity, such as one spin component, from being measured with arbitrary precision. Here we show that an intrinsic quantum uncertainty on a single observable is ineludible in a number of physical situations. When revealed on local observables of a bipartite system, such uncertainty defines an entire class of bona fide measures of nonclassical correlations. For the case of 2 x d systems, we find that a unique measure is defined, which we evaluate in closed form. We then discuss the role that these correlations, which are of the 'discord' type, can play in the context of quantum metrology. We show in particular that the amount of discord present in a bipartite mixed probe state guarantees a minimum precision, as quantified by the quantum Fisher information, in the optimal phase estimation protocol.Comment: Published in PRL, Editors' Suggestio

    How difficult is it to prepare a quantum state?

    Get PDF
    Consider a quantum system prepared in an input state. One wants to drive it into a target state. Assuming classical states and operations as free resources, I identify a geometric cost function which quantifies the difficulty of the protocol in terms of how different it is from a classical process. The quantity determines a lower bound to the number of commuting unitary transformations required to complete the task. I then discuss the link between the quantum character of a state preparation and the amount of coherence and quantum correlations that are created in the target state.Comment: Published versio

    An axiomatic measure of one-way quantum information

    Full text link
    I introduce an algorithm to detect one-way quantum information between two interacting quantum systems, i.e. the direction and orientation of the information transfer in arbitrary quantum dynamics. I then build an information-theoretic quantifier of one-way information which satisfies a set of desirable axioms. In particular, it correctly evaluates whether correlation implies one-way quantum information, and when the latter is transferred between uncorrelated systems. In the classical scenario, the quantity measures information transfer between random variables. I also generalize the method to identify and rank concurrent sources of quantum information flow in many-body dynamics, enabling to reconstruct causal patterns in complex networks.Comment: LA-UR-19-2631

    Quantum discord for general two--qubit states: Analytical progress

    Full text link
    We present a reliable algorithm to evaluate quantum discord for general two--qubit states, amending and extending an approach recently put forward for the subclass of X--states. A closed expression for the discord of arbitrary states of two qubits cannot be obtained, as the optimization problem for the conditional entropy requires the solution to a pair of transcendental equations in the state parameters. We apply our algorithm to run a numerical comparison between quantum discord and an alternative, computable measure of non-classical correlations, namely the geometric discord. We identify the extremally non-classically correlated two--qubit states according to the (normalized) geometric discord, at fixed value of the conventional quantum discord. The latter cannot exceed the square root of the former for systems of two qubits.Comment: 8 pages, 2 figure
    • …
    corecore