10 research outputs found

    Economic sustainability of biogas production from animal manure: a regional circular economy model

    Get PDF
    Purpose: This paper aims to understand the implementation of a circular economic business where animal manure is used to produce biogas and alternative fertilizer in a regional network of manure suppliers and biogas producers and to reveal the impacts of five variables (manure quantity, transportation distance, manure dry content, manure price and manure discharge price) on the economic sustainability of manure-based biogas supply chains. Design/methodology/approach: An enterprise input-output approach is used to model physical and monetary flows of the manure-based biogas supply chain. Computational experiments are performed on all variables to identify under which conditions the cooperation is beneficial for all actors. Findings: The cooperation is profitable for a large-scale farm (>20,000 t/year) if biogas producer (b) pays farmer (f) to receive its manure (5 €/t) or if f sells manure for free and manure disposal costs are >10 €/t. Cooperation is always profitable for b if f pays b to supply its manure (5€/t). If b receives manure for free, benefits are always positive if b is a medium-large-scale plant (>20,000 t/year). For a small-scale plant, benefits are positive if manure dry content (MDC) is ≥12 per cent and transportation distance is ≤10 km. Originality/value: The paper adds value to the biogas production research, as it makes holistic analysis of five variables which might change under different policy and geographical conditions. The investors in biogas production, suppliers and transportation companies can find correspondence to empirical findings for their own site-specific cases

    Very high-resolution seismic stratigraphy of Pleistocene eustatic minima markers as a tool to reconstruct the tectonic evolution of the northern Latium shelf (Tyrrhenian Sea, Italy)

    No full text
    This paper analyzes depth variations of seismically detected lowstand features (i.e., paleo-shelf break and lowstand submerged depositional terraces [LSDTs]), in order to define vertical movements along a continental margin. Narrowly spaced, high-resolution two-dimensional reflection seismic data were used, collected along a segment of the continental shelf of Latium (eastern Tyrrhenian Sea, Italy). Seismostratigraphic analysis allowed us to identify the six most-recent fourth-order depositional sequences formed in the past ~500 k.y. They have a different degree of preservation in the outer and middle shelf, with almost no continuation in the inner shelf. Some wedge-shaped bodies interpreted as LSDTs can be identified in these units. The depth of paleo-shelf break and LSDTs of marine isotope stage 12 (ca. 435 ka) was measured, and gradually varies along the margin between ~220 m and ~131 m below current sea level. Differential subsidence rates have been estimated for the area, varying from 0 to -0.21 mm/a. The spatial variations agree with studies of uplifted coastal terraces on land, controlled by localized volcanic activity along the Latium section of the Tyrrhenian coast. The comparison of deformation onshore and offshore has proven to be a promising approach for understanding the evolution of uplifting continental margins. © 2013 Geological Society of America

    Large scale validation of an efficient CRISPR/Cas-based multi gene editing protocol in Escherichia coli

    No full text
    Abstract Background The exploitation of the CRISPR/Cas9 machinery coupled to lambda (λ) recombinase-mediated homologous recombination (recombineering) is becoming the method of choice for genome editing in E. coli. First proposed by Jiang and co-workers, the strategy has been subsequently fine-tuned by several authors who demonstrated, by using few selected loci, that the efficiency of mutagenesis (number of mutant colonies over total number of colonies analyzed) can be extremely high (up to 100%). However, from published data it is difficult to appreciate the robustness of the technology, defined as the number of successfully mutated loci over the total number of targeted loci. This information is particularly relevant in high-throughput genome editing, where repetition of experiments to rescue missing mutants would be impractical. This work describes a “brute force” validation activity, which culminated in the definition of a robust, simple and rapid protocol for single or multiple gene deletions. Results We first set up our own version of the CRISPR/Cas9 protocol and then we evaluated the mutagenesis efficiency by changing different parameters including sequence of guide RNAs, length and concentration of donor DNAs, and use of single stranded and double stranded donor DNAs. We then validated the optimized conditions targeting 78 “dispensable” genes. This work led to the definition of a protocol, featuring the use of double stranded synthetic donor DNAs, which guarantees mutagenesis efficiencies consistently higher than 10% and a robustness of 100%. The procedure can be applied also for simultaneous gene deletions. Conclusions This work defines for the first time the robustness of a CRISPR/Cas9-based protocol based on a large sample size. Since the technical solutions here proposed can be applied to other similar procedures, the data could be of general interest for the scientific community working on bacterial genome editing and, in particular, for those involved in synthetic biology projects requiring high throughput procedures
    corecore