26 research outputs found

    Banding the World Together; The Global Growth of Control Banding and Qualitative Occupational Risk Management

    Get PDF
    Control Banding (CB) strategies to prevent work-related illness and injury for 2.5 billion workers without access to health and safety professionals has grown exponentially this last decade. CB originates from the pharmaceutical industry to control active pharmaceutical ingredients without a complete toxicological basis and therefore no occupational exposure limits. CB applications have broadened into chemicals in general - including new emerging risks like nanomaterials and recently into ergonomics and injury prevention. CB is an action-oriented qualitative risk assessment strategy offering solutions and control measures to users through “toolkits”. Chemical CB toolkits are user-friendly approaches used to achieve workplace controls in the absence of firm toxicological and quantitative exposure information. The model (technical) validation of these toolkits is well described, however firm operational analyses (implementation aspects) are lacking. Consequentially, it is often not known if toolkit use leads to successful interventions at individual workplaces. This might lead to virtual safe workplaces without knowing if workers are truly protected. Upcoming international strategies from the World Health Organization Collaborating Centers request assistance in developing and evaluating action-oriented procedures for workplace risk assessment and control. It is expected that to fulfill this strategy’s goals, CB approaches will continue its important growth in protecting workers

    Environmental Risk Communication through Qualitative Risk Assessment

    No full text
    Environmental analysts are often hampered in communicating the risks of environmental contaminants due to the myriad of regulatory requirements that are applicable. The use of a qualitative, risk-based control banding strategy for assessment and control of potential environmental contaminants provides a standardized approach to improve risk communication. Presented is a model that provides an effective means for determining standardized responses and controls for common environmental issues based on the level of risk. The model is designed for integration within an occupational health and safety management system to provide a multidisciplinary environmental and occupational risk management approach. This environmental model, which utilizes multidisciplinary control banding strategies for delineating risk, complements the existing Risk Level Based Management System, a proven method in a highly regulated facility for occupational health and safety. A simplified environmental risk matrix is presented that is stratified over four risk levels. Examples of qualitative environmental control banding strategies are presented as they apply to United States regulations for construction, research activities, facility maintenance, and spill remediation that affect air, water, soil, and waste disposal. This approach offers a standardized risk communication language for multidisciplinary issues that will improve communications within and between environmental health and safety professionals, workers, and management

    Environmental Risk Communication through Qualitative Risk Assessment

    No full text
    Environmental analysts are often hampered in communicating the risks of environmental contaminants due to the myriad of regulatory requirements that are applicable. The use of a qualitative, risk-based control banding strategy for assessment and control of potential environmental contaminants provides a standardized approach to improve risk communication. Presented is a model that provides an effective means for determining standardized responses and controls for common environmental issues based on the level of risk. The model is designed for integration within an occupational health and safety management system to provide a multidisciplinary environmental and occupational risk management approach. This environmental model, which utilizes multidisciplinary control banding strategies for delineating risk, complements the existing Risk Level Based Management System, a proven method in a highly regulated facility for occupational health and safety. A simplified environmental risk matrix is presented that is stratified over four risk levels. Examples of qualitative environmental control banding strategies are presented as they apply to United States regulations for construction, research activities, facility maintenance, and spill remediation that affect air, water, soil, and waste disposal. This approach offers a standardized risk communication language for multidisciplinary issues that will improve communications within and between environmental health and safety professionals, workers, and management

    Application of a pilot control banding tool for risk level assessment and control of nanoparticle exposures. The Annals of occupational hygiene

    No full text
    Control banding (CB) strategies offer simplified solutions for controlling worker exposures to constituents that are found in the workplace in the absence of firm toxicological and exposure data. These strategies may be particularly useful in nanotechnology applications, considering the overwhelming level of uncertainty over what nanomaterials and nanotechnologies present as potential work-related health risks, what about these materials might lead to adverse toxicological activity, how risk related to these might be assessed and how to manage these issues in the absence of this information. This study introduces a pilot CB tool or 'CB Nanotool' that was developed specifically for characterizing the health aspects of working with engineered nanoparticles and determining the level of risk and associated controls for five ongoing nanotechnology-related operations being conducted at two Department of Energy research laboratories. Based on the application of the CB Nanotool, four of the five operations evaluated in this study were found to have implemented controls consistent with what was recommended by the CB Nanotool, with one operation even exceeding the required controls for that activity. The one remaining operation was determined to require an upgrade in controls. By developing this dynamic CB Nanotool within the realm of the scientific information available, this application of CB appears to be a useful approach for assessing the risk of nanomaterial operations, providing recommendations for appropriate engineering controls and facilitating the allocation of resources to the activities that most need them

    Application of a pilot control banding tool for risk level assessment and control of nanoparticle exposures. The Annals of occupational hygiene

    No full text
    ABSTRACT Control Banding (CB) strategies offer simplified solutions for controlling worker exposures to constituents that are found in the workplace in the absence of firm toxicological and exposure data. These strategies may be particularly useful in nanotechnology applications, considering the overwhelming level of uncertainty over what nanomaterials and nanotechnologies present as potential work-related health risks, what about these materials might lead to adverse toxicological activity, how risk related to these might be assessed, and how to manage these issues in the absence of this information. This study introduces a pilot CB tool or 'CB Nanotool' that was developed specifically for characterizing the health aspects of working with engineered nanoparticles and determining the level of risk and associated controls for five ongoing nanotechnology-related operations being conducted at two Department of Energy (DOE) research laboratories. Based on the application of the CB Nanotool, four of the five operations evaluated in this study were found to have implemented controls consistent with what was recommended by the CB Nanotool, with one operation even exceeding the required controls for that activity. The one remaining operation was determined to require an upgrade in controls. By developing this dynamic CB Nanotool within the realm of the scientific information available, this application of CB appears to be a useful approach for assessing the risk of nanomaterial operations, providing recommendations for appropriate engineering controls, and facilitating the allocation of resources to the activities that most need them

    Review of Qualitative Approaches for the Construction Industry: Designing a Risk Management Toolbox

    Get PDF
    Objectives: This paper presents the framework and protocol design for a construction industry risk management toolbox. The construction industry needs a comprehensive, systematic approach to assess and control occupational risks. These risks span several professional health and safety disciplines, emphasized by multiple international occupational research agenda projects including: falls, electrocution, noise, silica, welding fumes, and musculoskeletal disorders. Yet, the International Social Security Association says, "whereas progress has been made in safety and health, the construction industry is still a high risk sector."Methods: Small- and medium-sized enterprises (SMEs) employ about 80% of the world's construction workers. In recent years a strategy for qualitative occupational risk management, known as Control Banding (CB) has gained international attention as a simplified approach for reducing work-related risks. CB groups hazards into stratified risk 'bands', identifying commensurate controls to reduce the level of risk and promote worker health and safety. We review these qualitative solutions-based approaches and identify strengths and weaknesses toward designing a simplified CB 'toolbox' approach for use by SMEs in construction trades.Results: This toolbox design proposal includes international input on multidisciplinary approaches for performing a qualitative risk assessment determining a risk 'band' for a given project. Risk bands are used to identify the appropriate level of training to oversee construction work, leading to commensurate and appropriate control methods to perform the work safely.Conclusion: The Construction Toolbox presents a review-generated format to harness multiple solutions-based national programs and publications for controlling construction-related risks with simplified approaches across the occupational safety, health and hygiene professions
    corecore