493 research outputs found

    Hang With Your Buddies to Resist Intersection Attacks

    Full text link
    Some anonymity schemes might in principle protect users from pervasive network surveillance - but only if all messages are independent and unlinkable. Users in practice often need pseudonymity - sending messages intentionally linkable to each other but not to the sender - but pseudonymity in dynamic networks exposes users to intersection attacks. We present Buddies, the first systematic design for intersection attack resistance in practical anonymity systems. Buddies groups users dynamically into buddy sets, controlling message transmission to make buddies within a set behaviorally indistinguishable under traffic analysis. To manage the inevitable tradeoffs between anonymity guarantees and communication responsiveness, Buddies enables users to select independent attack mitigation policies for each pseudonym. Using trace-based simulations and a working prototype, we find that Buddies can guarantee non-trivial anonymity set sizes in realistic chat/microblogging scenarios, for both short-lived and long-lived pseudonyms.Comment: 15 pages, 8 figure

    Keeping Authorities "Honest or Bust" with Decentralized Witness Cosigning

    Get PDF
    The secret keys of critical network authorities - such as time, name, certificate, and software update services - represent high-value targets for hackers, criminals, and spy agencies wishing to use these keys secretly to compromise other hosts. To protect authorities and their clients proactively from undetected exploits and misuse, we introduce CoSi, a scalable witness cosigning protocol ensuring that every authoritative statement is validated and publicly logged by a diverse group of witnesses before any client will accept it. A statement S collectively signed by W witnesses assures clients that S has been seen, and not immediately found erroneous, by those W observers. Even if S is compromised in a fashion not readily detectable by the witnesses, CoSi still guarantees S's exposure to public scrutiny, forcing secrecy-minded attackers to risk that the compromise will soon be detected by one of the W witnesses. Because clients can verify collective signatures efficiently without communication, CoSi protects clients' privacy, and offers the first transparency mechanism effective against persistent man-in-the-middle attackers who control a victim's Internet access, the authority's secret key, and several witnesses' secret keys. CoSi builds on existing cryptographic multisignature methods, scaling them to support thousands of witnesses via signature aggregation over efficient communication trees. A working prototype demonstrates CoSi in the context of timestamping and logging authorities, enabling groups of over 8,000 distributed witnesses to cosign authoritative statements in under two seconds.Comment: 20 pages, 7 figure
    corecore