493 research outputs found
Hang With Your Buddies to Resist Intersection Attacks
Some anonymity schemes might in principle protect users from pervasive
network surveillance - but only if all messages are independent and unlinkable.
Users in practice often need pseudonymity - sending messages intentionally
linkable to each other but not to the sender - but pseudonymity in dynamic
networks exposes users to intersection attacks. We present Buddies, the first
systematic design for intersection attack resistance in practical anonymity
systems. Buddies groups users dynamically into buddy sets, controlling message
transmission to make buddies within a set behaviorally indistinguishable under
traffic analysis. To manage the inevitable tradeoffs between anonymity
guarantees and communication responsiveness, Buddies enables users to select
independent attack mitigation policies for each pseudonym. Using trace-based
simulations and a working prototype, we find that Buddies can guarantee
non-trivial anonymity set sizes in realistic chat/microblogging scenarios, for
both short-lived and long-lived pseudonyms.Comment: 15 pages, 8 figure
Keeping Authorities "Honest or Bust" with Decentralized Witness Cosigning
The secret keys of critical network authorities - such as time, name,
certificate, and software update services - represent high-value targets for
hackers, criminals, and spy agencies wishing to use these keys secretly to
compromise other hosts. To protect authorities and their clients proactively
from undetected exploits and misuse, we introduce CoSi, a scalable witness
cosigning protocol ensuring that every authoritative statement is validated and
publicly logged by a diverse group of witnesses before any client will accept
it. A statement S collectively signed by W witnesses assures clients that S has
been seen, and not immediately found erroneous, by those W observers. Even if S
is compromised in a fashion not readily detectable by the witnesses, CoSi still
guarantees S's exposure to public scrutiny, forcing secrecy-minded attackers to
risk that the compromise will soon be detected by one of the W witnesses.
Because clients can verify collective signatures efficiently without
communication, CoSi protects clients' privacy, and offers the first
transparency mechanism effective against persistent man-in-the-middle attackers
who control a victim's Internet access, the authority's secret key, and several
witnesses' secret keys. CoSi builds on existing cryptographic multisignature
methods, scaling them to support thousands of witnesses via signature
aggregation over efficient communication trees. A working prototype
demonstrates CoSi in the context of timestamping and logging authorities,
enabling groups of over 8,000 distributed witnesses to cosign authoritative
statements in under two seconds.Comment: 20 pages, 7 figure
- …
