22 research outputs found
ADAPTATIONS OF INDIGENOUS BACTERIA TO FUEL CONTAMINATION IN KARST AQUIFERS IN SOUTH-CENTRAL KENTUCKY
Abstract: The karst aquifer systems in southern Kentucky can be dynamic and quick to change. Microorganisms that live in these unpredictable aquifers are constantly faced with environmental changes. Their survival depends upon adaptations to changes in water chemistry, taking advantage of positive stimuli and avoiding negative environmental conditions. The U.S. Geological Survey conducted a study in 2001 to determine the capability of bacteria to adapt in two distinct regions of water quality in a karst aquifer, an area of clean, oxygenated groundwater and an area where the groundwater was oxygen depleted and contaminated by jet fuel. Water samples containing bacteria were collected from one clean well and two jet fuel contaminated wells in a conduit-dominated karst aquifer. Bacterial concentrations, enumerated through direct count, ranged from 500,000 to 2.7 million bacteria per mL in the clean portion of the aquifer, and 200,000 to 3.2 million bacteria per mL in the contaminated portion of the aquifer over a twelve month period. Bacteria from the clean well ranged in size from 0.2 to 2.5 mm, whereas bacteria from one fuel-contaminated well were generally larger, ranging in size from 0.2 to 3.9 mm. Also, bacteria collected from the clean well had a higher density and, consequently, were more inclined to sink than bacteria collected from contaminated wells. Bacteria collected from the clean portion of the karst aquifer were predominantly (,95%) Gram-negative and more likely to have flagella present than bacteria collected from the contaminated wells, which included a substantial fraction (,30%) of Gram-positive varieties. The ability of the bacteria from the clean portion of the karst aquifer to biodegrade benzene and toluene was studied under aerobic and anaerobic conditions in laboratory microcosms. The rate of fuel biodegradation in laboratory studies was approximately 50 times faster under aerobic conditions as compared to anaerobic, sulfur-reducing conditions. The optimum pH for fuel biodegradation ranged from 6 to 7. These findings suggest that bacteria have adapted to water-saturated karst systems with a variety of active and passive transport mechanisms
Breast cancer metastasis suppressor 1 (BRMS1) inhibits osteopontin transcription by abrogating NF-κB activation
BACKGROUND: Osteopontin (OPN), a secreted phosphoglycoprotein, has been strongly associated with tumor progression and aggressive cancers. MDA-MB-435 cells secrete very high levels of OPN. However metastasis-suppressed MDA-MB-435 cells, which were transfected with breast cancer metastasis suppressor 1 (BRMS1), expressed significantly less OPN. BRMS1 is a member of mSin3-HDAC transcription co-repressor complex and has been shown to suppress the metastasis of breast cancer and melanoma cells in animal models. Hence we hypothesized that BRMS1 regulates OPN expression. RESULTS: The search for a BRMS1-regulated site on the OPN promoter, using luciferase reporter assays of the promoter deletions, identified a novel NF-κB site (OPN/NF-κB). Electrophoretic mobility shift assays and chromatin immunoprecipitations (ChIP) confirmed this site to be an NF-κB-binding site. We also show a role of HDAC3 in suppression of OPN via OPN/NF-κB. CONCLUSION: Our results show that BRMS1 regulates OPN transcription by abrogating NF-κB activation. Thus, we identify OPN, a tumor-metastasis activator, as a crucial downstream target of BRMS1. Suppression of OPN may be one of the possible underlying mechanisms of BRMS1-dependent suppression of tumor metastasis
Osteoporosis-related fracture case definitions for population-based administrative data
<p>Abstract</p> <p>Background</p> <p>Population-based administrative data have been used to study osteoporosis-related fracture risk factors and outcomes, but there has been limited research about the validity of these data for ascertaining fracture cases. The objectives of this study were to: (a) compare fracture incidence estimates from administrative data with estimates from population-based clinically-validated data, and (b) test for differences in incidence estimates from multiple administrative data case definitions.</p> <p>Methods</p> <p>Thirty-five case definitions for incident fractures of the hip, wrist, humerus, and clinical vertebrae were constructed using diagnosis codes in hospital data and diagnosis and service codes in physician billing data from Manitoba, Canada. Clinically-validated fractures were identified from the Canadian Multicentre Osteoporosis Study (CaMos). Generalized linear models were used to test for differences in incidence estimates.</p> <p>Results</p> <p>For hip fracture, sex-specific differences were observed in the magnitude of under- and over-ascertainment of administrative data case definitions when compared with CaMos data. The length of the fracture-free period to ascertain incident cases had a variable effect on over-ascertainment across fracture sites, as did the use of imaging, fixation, or repair service codes. Case definitions based on hospital data resulted in under-ascertainment of incident clinical vertebral fractures. There were no significant differences in trend estimates for wrist, humerus, and clinical vertebral case definitions.</p> <p>Conclusions</p> <p>The validity of administrative data for estimating fracture incidence depends on the site and features of the case definition.</p
Teaching: Natural or Cultural?
In this chapter I argue that teaching, as we now understand the term, is historically and cross-culturally very rare. It appears to be unnecessary to transmit culture or to socialize children. Children are, on the other hand, primed by evolution to be avid observers, imitators, players and helpers—roles that reveal the profoundly autonomous and self-directed nature of culture acquisition (Lancy in press a). And yet, teaching is ubiquitous throughout the modern world—at least among the middle to upper class segment of the population. This ubiquity has led numerous scholars to argue for the universality and uniqueness of teaching as a characteristically human behavior. The theme of this chapter is that this proposition is unsustainable. Teaching is largely a result of recent cultural changes and the emergence of modern economies, not evolution
Effect of Growth Conditions and Staining Procedure upon the Subsurface Transport and Attachment Behaviors of a Groundwater Protist
The transport and attachment behaviors of Spumella guttula (Kent), a nanoflagellate (protist) found in contaminated and uncontaminated aquifer sediments in Cape Cod, Mass., were assessed in flowthrough and static columns and in a field injection-and-recovery transport experiment involving an array of multilevel samplers. Transport of S. guttula harvested from low-nutrient (10 mg of dissolved organic carbon per liter), slightly acidic, granular (porous) growth media was compared to earlier observations involving nanoflagellates grown in a traditional high-nutrient liquid broth. In contrast to the highly retarded (retardation factor of ∼3) subsurface transport previously reported for S. guttula, the peak concentration of porous-medium-grown S. guttula traveled concomitantly with that of a conservative (bromide) tracer. About one-third of the porous-medium-grown nanoflagellates added to the aquifer were transported at least 2.8 m downgradient, compared to only ∼2% of the broth-grown nanoflagellates. Flowthrough column studies revealed that a vital (hydroethidine [HE]) staining procedure resulted in considerably less attachment (more transport) of S. guttula in aquifer sediments than did a staining-and-fixation procedure involving 4′,6′-diamidino-2-phenylindole (DAPI) and glutaraldehyde. The calculated collision efficiency (∼10(−2) for porous-medium-grown, DAPI-stained nanoflagellates) was comparable to that observed earlier for the indigenous community of unattached groundwater bacteria that serve as prey. The attachment of HE-labeled S. guttula onto aquifer sediment grains was independent of pH (over the range from pH 3 to 9) suggesting a primary attachment mechanism that may be fundamentally different from that of their prey bacteria, which exhibit sharp decreases in fractional attachment with increasing pH. The high degree of mobility of S. guttula in the aquifer sediments has important ecological implications for the protistan community within the temporally changing plume of organic contaminants in the Cape Cod aquifer
Pathogen and chemical transport in the karst limestone of the Biscayne aquifer: 3. Use of microspheres to estimate the transport potential of Cryptosporidium parvum oocysts
[1] The vulnerability of a municipal well in the Northwest well field in southeastern Florida to potential contamination by Cryptosporidium parvum oocysts was assessed in a large‐scale, forced‐gradient (convergent) injection and recovery test. The field study involved a simultaneous pulse introduction of a nonreactive tracer (SF6, an inert gas) and oocyst‐sized (1.6, 2.9, and 4.9 μ m diameter) carboxylated polystyrene microspheres into karst limestone of the Biscayne aquifer characterized by a complex triple (matrix, touching‐vug, and conduit) porosity. Fractional recoveries 97 m down gradient were inversely related to diameter and ranged from 2.9% for the 4.9 μ m microspheres to 5.8% for 1.6 μ m microspheres. Their centers of mass arrived at the pumping well approximately threefold earlier than that of the nonreactive tracer SF6 (gas), underscoring the need for use of colloid tracers and field‐scale tracer tests for these kinds of evaluations. In a modified triaxial cell using near in situ chemical conditions, 2.9 and 4.9 μ m microspheres underestimated by fourfold to sixfold the attachment potential of the less electronegative 2.9–4.1 μ m oocysts in the matrix porosity of limestone core samples. The field and laboratory results collectively suggested that it may take 200–300 m of transport to ensure even a 1‐log unit removal of oocysts, even though the limestone surfaces exhibited a substantive capability for their sorptive removal. The study further demonstrated the utility of microspheres as oocyst surrogates in field‐scale assessments of well vulnerability in limestone, provided that differences in attachment behaviors between oocysts and microspheres are taken into account