25 research outputs found

    Extending Bauer's corollary to fractional derivatives

    Full text link
    We comment on the method of Dreisigmeyer and Young [D. W. Dreisigmeyer and P. M. Young, J. Phys. A \textbf{36}, 8297, (2003)] to model nonconservative systems with fractional derivatives. It was previously hoped that using fractional derivatives in an action would allow us to derive a single retarded equation of motion using a variational principle. It is proven that, under certain reasonable assumptions, the method of Dreisigmeyer and Young fails.Comment: Accepted Journal of Physics A at www.iop.org/EJ/journal/JPhys

    Nonconservative Lagrangian mechanics II: purely causal equations of motion

    Full text link
    This work builds on the Volterra series formalism presented in [D. W. Dreisigmeyer and P. M. Young, J. Phys. A \textbf{36}, 8297, (2003)] to model nonconservative systems. Here we treat Lagrangians and actions as `time dependent' Volterra series. We present a new family of kernels to be used in these Volterra series that allow us to derive a single retarded equation of motion using a variational principle

    Geometry and field theory in multi-fractional spacetime

    Full text link
    We construct a theory of fields living on continuous geometries with fractional Hausdorff and spectral dimensions, focussing on a flat background analogous to Minkowski spacetime. After reviewing the properties of fractional spaces with fixed dimension, presented in a companion paper, we generalize to a multi-fractional scenario inspired by multi-fractal geometry, where the dimension changes with the scale. This is related to the renormalization group properties of fractional field theories, illustrated by the example of a scalar field. Depending on the symmetries of the Lagrangian, one can define two models. In one of them, the effective dimension flows from 2 in the ultraviolet (UV) and geometry constrains the infrared limit to be four-dimensional. At the UV critical value, the model is rendered power-counting renormalizable. However, this is not the most fundamental regime. Compelling arguments of fractal geometry require an extension of the fractional action measure to complex order. In doing so, we obtain a hierarchy of scales characterizing different geometric regimes. At very small scales, discrete symmetries emerge and the notion of a continuous spacetime begins to blur, until one reaches a fundamental scale and an ultra-microscopic fractal structure. This fine hierarchy of geometries has implications for non-commutative theories and discrete quantum gravity. In the latter case, the present model can be viewed as a top-down realization of a quantum-discrete to classical-continuum transition.Comment: 1+82 pages, 1 figure, 2 tables. v2-3: discussions clarified and improved (especially section 4.5), typos corrected, references added; v4: further typos correcte
    corecore