25 research outputs found
Extending Bauer's corollary to fractional derivatives
We comment on the method of Dreisigmeyer and Young [D. W. Dreisigmeyer and P.
M. Young, J. Phys. A \textbf{36}, 8297, (2003)] to model nonconservative
systems with fractional derivatives. It was previously hoped that using
fractional derivatives in an action would allow us to derive a single retarded
equation of motion using a variational principle. It is proven that, under
certain reasonable assumptions, the method of Dreisigmeyer and Young fails.Comment: Accepted Journal of Physics A at www.iop.org/EJ/journal/JPhys
Nonconservative Lagrangian mechanics II: purely causal equations of motion
This work builds on the Volterra series formalism presented in [D. W.
Dreisigmeyer and P. M. Young, J. Phys. A \textbf{36}, 8297, (2003)] to model
nonconservative systems. Here we treat Lagrangians and actions as `time
dependent' Volterra series. We present a new family of kernels to be used in
these Volterra series that allow us to derive a single retarded equation of
motion using a variational principle
Geometry and field theory in multi-fractional spacetime
We construct a theory of fields living on continuous geometries with
fractional Hausdorff and spectral dimensions, focussing on a flat background
analogous to Minkowski spacetime. After reviewing the properties of fractional
spaces with fixed dimension, presented in a companion paper, we generalize to a
multi-fractional scenario inspired by multi-fractal geometry, where the
dimension changes with the scale. This is related to the renormalization group
properties of fractional field theories, illustrated by the example of a scalar
field. Depending on the symmetries of the Lagrangian, one can define two
models. In one of them, the effective dimension flows from 2 in the ultraviolet
(UV) and geometry constrains the infrared limit to be four-dimensional. At the
UV critical value, the model is rendered power-counting renormalizable.
However, this is not the most fundamental regime. Compelling arguments of
fractal geometry require an extension of the fractional action measure to
complex order. In doing so, we obtain a hierarchy of scales characterizing
different geometric regimes. At very small scales, discrete symmetries emerge
and the notion of a continuous spacetime begins to blur, until one reaches a
fundamental scale and an ultra-microscopic fractal structure. This fine
hierarchy of geometries has implications for non-commutative theories and
discrete quantum gravity. In the latter case, the present model can be viewed
as a top-down realization of a quantum-discrete to classical-continuum
transition.Comment: 1+82 pages, 1 figure, 2 tables. v2-3: discussions clarified and
improved (especially section 4.5), typos corrected, references added; v4:
further typos correcte