2,021 research outputs found
Propfan experimental data analysis
A data reduction method, which is consistent with the performance prediction methods used for analysis of new aircraft designs, is defined and compared to the method currently used by NASA using data obtained from an Ames Res. Center 11 foot transonic wind tunnel test. Pressure and flow visualization data from the Ames test for both the powered straight underwing nacelle, and an unpowered contoured overwing nacelle installation is used to determine the flow phenomena present for a wind mounted turboprop installation. The test data is compared to analytic methods, showing the analytic methods to be suitable for design and analysis of new configurations. The data analysis indicated that designs with zero interference drag levels are achieveable with proper wind and nacelle tailoring. A new overwing contoured nacelle design and a modification to the wing leading edge extension for the current wind tunnel model design are evaluated. Hardware constraints of the current model parts prevent obtaining any significant performance improvement due to a modified nacelle contouring. A new aspect ratio wing design for an up outboard rotation turboprop installation is defined, and an advanced contoured nacelle is provided
Testing Gravity in the Outer Solar System: Results from Trans-Neptunian Objects
The inverse square law of gravity is poorly probed by experimental tests at
distances of ~ 10 AUs. Recent analysis of the trajectory of the Pioneer 10 and
11 spacecraft have shown an unmodeled acceleration directed toward the Sun
which was not explained by any obvious spacecraft systematics, and occurred
when at distances greater than 20 AUs from the Sun. If this acceleration
represents a departure from Newtonian gravity or is indicative of an additional
mass distribution in the outer solar system, it should be detectable in the
orbits of Trans-Neptunian Objects (TNOs). To place limits on deviations from
Newtonian gravity, we have selected a well observed sample of TNOs found
orbiting between 20 and 100 AU from the Sun. By examining their orbits with
modified orbital fitting software, we place tight limits on the perturbations
of gravity that could exist in this region of the solar system.Comment: 20 pages, 4 figures, 2 tables, uses AASTex v5.x macro
Information Flow in Entangled Quantum Systems
All information in quantum systems is, notwithstanding Bell's theorem,
localised. Measuring or otherwise interacting with a quantum system S has no
effect on distant systems from which S is dynamically isolated, even if they
are entangled with S. Using the Heisenberg picture to analyse quantum
information processing makes this locality explicit, and reveals that under
some circumstances (in particular, in Einstein-Podolski-Rosen experiments and
in quantum teleportation) quantum information is transmitted through
'classical' (i.e. decoherent) information channels.Comment: PostScript version now available:
http://www.qubit.org/people/patrickh/Papers/InformationFlow.p
How Well Do We Know the Orbits of the Outer Planets?
This paper deals with the problem of astrometric determination of the orbital
elements of the outer planets, in particular by assessing the ability of
astrometric observations to detect perturbations of the sort expected from the
Pioneer effect or other small perturbations to gravity. We also show that while
using simplified models of the dynamics can lead to some insights, one must be
careful to not over-simplify the issues involved lest one be misled by the
analysis onto false paths. Specifically, we show that the current ephemeris of
Pluto does not preclude the existence of the Pioneer effect. We show that the
orbit of Pluto is simply not well enough characterized at present to make such
an assertion. A number of misunderstandings related to these topics have now
propagated through the literature and have been used as a basis for drawing
conclusions about the dynamics of the solar system. Thus, the objective of this
paper is to address these issues. Finally, we offer some comments dealing with
the complex topic of model selection and comparison.Comment: Accepted for publication in the Ap
Design, Construction, and Monitoring of the Ground-Water Resources of a Large Mine-Spoil Area: Star Fire Tract, Eastern Kentucky
By the year 2010, the Star Fire mining operation in Knott, Breathitt, and Perry Counties in eastern Kentucky, which uses mountaintop-removal and hollow-fill mining techniques, will have created approximately 5,000 acres of gently rolling terrain that could support alternative land uses. The present research is centered on approximately 1,000 acres of spoil created since mining began in 1981. An aquifer fed by both ground and surface water will be created within the spoil. Spoil-handling techniques such as cast blasting, dragline placement, end dumping by trucks, and surface grading have created porous coarse-rock zones within the spoil through which ground water can move. A vertical rubble chimney in the spoil has been constructed of durable rock to enhance infiltration to the ground-water reservoir through a surface infiltration basin.
Fourteen monitoring wells have been installed along with flumes to gage surface-water discharge and monitor water quantity and quality at the site. Dye-tracing studies have identified ground-water flow paths and flow velocities. A preliminary assessment of the water resources at the site indicates that a stable water table has been created at the mined site. Based on an average saturated thickness of 21 feet for the entire site and an estimated porosity of 20 percent, the spoil stores approximately 4,200 acre-feet (1.37 billion gallons) of water.
Dye-tracing data, hydraulic gradients, and water-quality data indicate that ground water moves more slowly in the spoil\u27s interior; from there it flows down into the hollow fills before discharging as springs along the bottom of the spoil. The springs discharge approximately 1 million gallons per day under normal flow conditions, and discharges of approximately 5 million gallons per day have been measured a week after rainfall events
Conserved microRNA targeting reveals preexisting gene dosage sensitivities that shaped amniote sex chromosome evolution
Mammalian X and Y Chromosomes evolved from an ordinary autosomal pair. Genetic decay of the Y led to X Chromosome inactivation (XCI) in females, but some Y-linked genes were retained during the course of sex chromosome evolution, and many X-linked genes did not become subject to XCI. We reconstructed gene-by-gene dosage sensitivities on the ancestral autosomes through phylogenetic analysis of microRNA (miRNA) target sites and compared these preexisting characteristics to the current status of Y-linked and X-linked genes in mammals. Preexisting heterogeneities in dosage sensitivity, manifesting as differences in the extent of miRNA-mediated repression, predicted either the retention of a Y homolog or the acquisition of XCI following Y gene decay. Analogous heterogeneities among avian Z-linked genes predicted either the retention of a W homolog or gene-specific dosage compensation following W gene decay. Genome-wide analyses of human copy number variation indicate that these heterogeneities consisted of sensitivity to both increases and decreases in dosage. We propose a model of XY/ZW evolution incorporating such preexisting dosage sensitivities in determining the evolutionary fates of individual genes. Our findings thus provide a more complete view of the role of dosage sensitivity in shaping the mammalian and avian sex chromosomes and reveal an important role for post-transcriptional regulatory sequences (miRNA target sites) in sex chromosome evolution
Electrochemical control of calcium carbonate crystallization and dissolution in nanopipettes
Electrochemically-controlled nanopipettes are becoming increasingly versatile tools for a diverse range of sequencing, sizing and imaging applications. Herein, the use of nanopipettes to induce and monitor quantitatively crystallization and dissolution in real time is considered, using CaCO3 in aqueous solution as an exemplar system. The bias between a quasi-reference counter electrode (QRCE) in a nanopipette and one in a bulk solution, is used to mix (or de-mix) two different solutions by ion migration and drive either growth or dissolution depending on the polarity. Furthermore, Raman spectroscopy can be applied simultaneously to identify polymorphs formed in the nanopipette. The technique is supported with a robust finite element method (FEM) model that allows the extraction of time-dependent saturation levels and mixing characteristics at the nanoscale. The technique shows great promise as a tool for rapidly screening growth additives and inhibitors, allowing eight different additives to be ranked in order of efficacy for crystal growth rate inhibition
Interobserver reliability of radial head fracture classification : two-dimensional compared with three-dimensional CT
Background: The Broberg and Morrey modification of the Mason classification of radial head fractures has substantial interobserver variation. This study used a large web-based collaborative of experienced orthopaedic surgeons to test the hypothesis that three-dimensional reconstructions of computed tomography (CT) scans improve the interobserver reliability of the classification of radial head fractures according to the Broberg and Morrey modification of the Mason classification.Methods: Eighty-five orthopaedic surgeons evaluated twelve radial head fractures. They were randomly assigned to review either radiographs and two-dimensional CT scans or radiographs and three-dimensional CT images to determine the fracture classification, fracture characteristics, and treatment recommendations. The kappa multirater measure (κ) was calculated to estimate agreement between observers.Results: Three-dimensional CT had moderate agreement and two-dimensional CT had fair agreement among observers for the Broberg and Morrey modification of the Mason classification, a difference that was significant. Observers assessed seven fracture characteristics, including fracture line, comminution, articular surface involvement, articular step or gap of ≥2 mm, central impaction, recognition of more than three fracture fragments, and fracture fragments too small to repair. There was a significant difference in kappa values between three-dimensional CT and two-dimensional CT for fracture fragments too small to repair, recognition of three fracture fragments, and central impaction. The difference between the other four fracture characteristics was not significant. Among treatment recommendations, there was fair agreement for both three-dimensional CT and two-dimensional CT.Conclusions: Although three-dimensional CT led to some small but significant decreases in interobserver variation, there is still considerable disagreement regarding classification and characterization of radial head fractures. Three-dimensional CT may be insufficient to optimize interobserver agreement.<br /
Effective Field Theory, Black Holes, and the Cosmological Constant
Bekenstein has proposed the bound S < pi M_P^2 L^2 on the total entropy S in
a volume L^3. This non-extensive scaling suggests that quantum field theory
breaks down in large volume. To reconcile this breakdown with the success of
local quantum field theory in describing observed particle phenomenology, we
propose a relationship between UV and IR cutoffs such that an effective field
theory should be a good description of Nature. We discuss implications for the
cosmological constant problem. We find a limitation on the accuracy which can
be achieved by conventional effective field theory: for example, the minimal
correction to (g-2) for the electron from the constrained IR and UV cutoffs is
larger than the contribution from the top quark.Comment: 5 pages, no figures minor clarifications, refs adde
The Stargazin-Related Protein {gamma}7 Interacts with the mRNA-Binding Protein Heterogeneous Nuclear Ribonucleoprotein A2 and Regulates the Stability of Specific mRNAs, Including CaV2.2
The role(s) of the novel stargazin-like {gamma}-subunit proteins remain controversial. We have shown previously that the neuron-specific {gamma}7 suppresses the expression of certain calcium channels, particularly CaV2.2, and is therefore unlikely to operate as a calcium channel subunit. We now show that the effect of {gamma}7 on CaV2.2 expression is via an increase in the degradation rate of CaV2.2 mRNA and hence a reduction of CaV2.2 protein level. Furthermore, exogenous expression of {gamma}7 in PC12 cells also decreased the endogenous CaV2.2 mRNA level. Conversely, knockdown of endogenous {gamma}7 with short-hairpin RNAs produced a reciprocal enhancement of CaV2.2 mRNA stability and an increase in endogenous calcium currents in PC12 cells. Moreover, both endogenous and expressed {gamma}7 are present on intracellular membranes, rather than the plasma membrane. The cytoplasmic C terminus of {gamma}7 is essential for all its effects, and we show that {gamma}7 binds directly via its C terminus to a heterogeneous nuclear ribonucleoprotein (hnRNP A2), which also binds to a motif in CaV2.2 mRNA, and is associated with native CaV2.2 mRNA in PC12 cells. The expression of hnRNP A2 enhances CaV2.2 IBa, and this enhancement is prevented by a concentration of {gamma}7 that alone has no effect on IBa. The effect of {gamma}7 is selective for certain mRNAs because it had no effect on {alpha}2{delta}-2 mRNA stability, but it decreased the mRNA stability for the potassium-chloride cotransporter, KCC1, which contains a similar hnRNP A2 binding motif to that in CaV2.2 mRNA. Our results indicate that {gamma}7 plays a role in stabilizing CaV2.2 mRNA
- …