4 research outputs found

    Blogging Your PACS

    No full text
    Acquiring, implementing, and maintaining a picture archiving and communication system (PACS) is an enduring and complex endeavor. A large-scale project such as this requires efficient and effective communication among a large number of stakeholders, sharing of complex documentation, recording ideas, experiences, and events such as meetings, and project milestones to succeed. Often, mass-market technologies designed for other purposes can be used to solve specific complex problems in healthcare. In this case, we wanted to explore the role of popular weblogging or “blogging” software to meet our needs. We reviewed a number of well-known blog software packages and evaluated them based on a set of criteria. We looked at simplicity of installation, configuration, and management. We also wanted an intuitive, Web-based interface for end-users, low cost of ownership, use of open source software, and a secure forum for all PACS team members. We chose and implemented the Invision Power Board for two purposes: local PACS administrative purposes and for a national PACS users' group discussion. We conclude that off the shelf, state-of-the-art, mass-market software such as that used for the currently very popular purpose of weblogging or “blogging” can be very useful in managing the variety of communications necessary for the successful implementation of PACS

    interpretation in

    No full text
    and image content integration for pulmonary nodul

    An Ontology for PACS Integration

    No full text
    An ontology describes a set of classes and the relationships among them. We explored the use of an ontology to integrate picture archiving and communication systems (PACS) with other information systems in the clinical enterprise. We created an ontological model of thoracic radiology that contained knowledge of anatomy, imaging procedures, and performed procedure steps. We explored the use of the model in two use cases: (1) to determine examination completeness and (2) to identify reference (comparison) images obtained in the same imaging projection. The model incorporated a total of 138 classes, including radiology orderables, procedures, procedure steps, imaging modalities, patient positions, and imaging planes. Radiological knowledge was encoded as relationships among these classes. The ontology successfully met the information requirements of the two use-case scenarios. Ontologies can represent radiological and clinical knowledge to integrate PACS with the clinical enterprise and to support the radiology interpretation process
    corecore