5,362 research outputs found
Optimal monopoly investment and capacity utilization under random demand
Unique value-maximizing programs of irreversible capacity investment and capacity utilization are described and shown to exist under general conditions for monopolist exhibiting capital adjustment costs and serving random consumer demand for a nondurable good over an infinite horizon. Stationary properties of these programs are then fully characterized under the assumption of serially independent demand disturbances. Optimal monopoly behavior in this case includes acquisition of a constant and positive level of capacity, the maintenance of a positive expected value of excess capacity in each period, and an asymmetrical response of price to unanticipated fluctuations in consumer demand. Under a general form of Markovian demand, the effect of uncertainty on irreversible capacity investment is also described in terms of the discounted flow of expected revenue accruing to the marginal unit of existing capacity and the option value of deferring the acquisition of additional capital. The option value of deferring such acquisition, created by the irreversibility of capacity investment, is characterized directly in terms of the value function of the firm, and is then shown to be zero in a stationary equilibrium with serially independent demand disturbances. The response of investment to increase demand uncertainty depends, as a result, directly on the properties of the marginal revenue product of capital. A non-negative response of optimal capacity to increased uncertainty in market demand is demonstrated for a general class of aggregate consumer preferences.Industrial capacity
Shocked Molecular Hydrogen in the 3C 326 Radio Galaxy System
The Spitzer spectrum of the giant FR II radio galaxy 3C 326 is dominated by
very strong molecular hydrogen emission lines on a faint IR continuum. The H2
emission originates in the northern component of a double-galaxy system
associated with 3C 326. The integrated luminosity in H2 pure-rotational lines
is 8.0E41 erg/s, which corresponds to 17% of the 8-70 micron luminosity of the
galaxy. A wide range of temperatures (125-1000 K) is measured from the H2 0-0
S(0)-S(7) transitions, leading to a warm H2 mass of 1.1E9 Msun. Low-excitation
ionic forbidden emission lines are consistent with an optical LINER
classification for the active nucleus, which is not luminous enough to power
the observed H2 emission. The H2 could be shock-heated by the radio jets, but
there is no direct indication of this. More likely, the H2 is shock-heated in a
tidal accretion flow induced by interaction with the southern companion galaxy.
The latter scenario is supported by an irregular morphology, tidal bridge, and
possible tidal tail imaged with IRAC at 3-9 micron. Unlike ULIRGs, which in
some cases exhibit H2 line luminosities of comparable strength, 3C 326 shows
little star-formation activity (~0.1 Msun/yr). This may represent an important
stage in galaxy evolution. Starburst activity and efficient accretion onto the
central supermassive black hole may be delayed until the shock-heated H2 can
kinematically settle and coolComment: 27 pages, 7 figures, accepted for publication in the Astrophysical
Journa
Trapping of magnetic flux by the plunge region of a black hole accretion disk
The existence of the radius of marginal stability means that accretion flows
around black holes invariably undergo a transition from a MHD turbulent
disk-like flow to an inward plunging flow. We argue that the plunging inflow
can greatly enhance the trapping of large scale magnetic field on the black
hole, and therefore may increase the importance of the Blandford-Znajek (BZ)
effect relative to previous estimates that ignore the plunge region. We support
this hypothesis by constructing and analyzing a toy-model of the dragging and
trapping of a large scale field by a black hole disk, revealing a strong
dependence of this effect on the effective magnetic Prandtl number of the MHD
turbulent disk. Furthermore, we show that the enhancement of the BZ effect
depends on the geometric thickness of the accretion disk. This may be, at least
in part, the physical underpinnings of the empirical relation between the
inferred geometric thickness of a black hole disk and the presence of a radio
jet.Comment: 18 pages, 3 figures, accepted for publication in the Astrophysical
Journal. See
http://www.astro.umd.edu/~chris/publications/movies/flux_trapping.html for
animation
Constraining the Nature of X-ray Cavities in Clusters and Galaxies
We present results from an extensive survey of 64 cavities in the X-ray halos
of clusters, groups and normal elliptical galaxies. We show that the evolution
of the size of the cavities as they rise in the X-ray atmosphere is
inconsistent with the standard model of adiabatic expansion of purely
hydrodynamic models. We also note that the majority of the observed bubbles
should have already been shredded apart by Rayleigh-Taylor and
Richtmyer-Meshkov instabilities if they were of purely hydrodynamic nature.
Instead we find that the data agrees much better with a model where the
cavities are magnetically dominated and inflated by a current-dominated
magneto-hydrodynamic jet model, recently developed by Li et al. (2006) and
Nakamura et al. (2006). We conduct complex Monte-Carlo simulations of the
cavity detection process including incompleteness effects to reproduce the
cavity sample's characteristics. We find that the current-dominated model
agrees within 1sigma, whereas the other models can be excluded at >5sigma
confidence. To bring hydrodynamic models into better agreement, cavities would
have to be continuously inflated. However, these assessments are dependent on
our correct understanding of the detectability of cavities in X-ray
atmospheres, and will await confirmation when automated cavity detection tools
become available in the future. Our results have considerable impact on the
energy budget associated with active galactic nucleus feedback.Comment: 21 pages, 12 figures, emulateapj, accepted for publication in ApJ,
responded to referee's comments and added a new model, conclusions unchange
Climate-induced changes in river flow regimes will alter future bird distributions
Anthropogenic forcing of the climate is causing an intensification of the global water cycle, leading to an increase in the frequency and magnitude of floods and droughts. River flow shapes the ecology of riverine ecosystems and climate-driven changes in river flows are predicted to have severe consequences for riverine species, across all levels of trophic organization. However, understanding species' responses to variation in flow is limited through a lack of quantitative modelling of hydroecological interactions. Here, we construct a Bioclimatic Envelope Model (BEM) ensemble based on a suite of plausible future flow scenarios to show how predicted alterations in flow regimes may alter the distribution of a predatory riverine species, the White-throated Dipper (Cinclus cinclus). Models predicted a gradual diminution of dipper probability of occurrence between present day and 2098. This decline was most rapid in western areas of Great Britain and was principally driven by a projected decrease in flow magnitude and variability around low flows. Climate-induced changes in river flow may, therefore, represent a previously unidentified mechanism by which climate change may mediate range shifts in birds and other riverine biota
Series Intermittent Sand Filtration of Wastewater Lagoon Effluents
Previous researches have found single stage intermittent sand filtration to be a feasible and economic means of upgrading wastewater lagoon effluent to meet future standards. However the major constraint on their use has been the length of the filter runs. Laboratory scale and pilot-scale series intermittent sand filtration of wastewater lagoon effluents has been found to substantially increase the length of filter runs as well as produce a high quality effluent able to meet future standards. Higher loading rates were round to be possible with series intermittent sand filtration. The operation consistently produced an effluent meeting present Utah “Class C” water quality standards for BOD5 (\u3c5 mg/l), and the operation also consistently met the 1980 Utah wastewater treatment plant effluent standard for suspended solids (\u3c 10 mg/l)
- …