13,103 research outputs found

    Guide to the nature and methods of analysis of the clay fraction of tephras from the South Auckland region, New Zealand.

    Get PDF
    The manual outlines some of the more common laboratory procedures available for qualitatively and quantitatively analysing the composition of the tephric clays, many of which are difficult to determine because of their short range order or 'amorphous' nature. Techniques described and assessed in terms of their rapidity and quantitativeness include XRD, IR, DTA, TEM and SEM, sodium fluoride reactivity, chemical dissolution analyses, and surface area measurements. No one technique alone produces a definitive clay fraction analysis of tephric deposits. -from Author

    Oxygen isotopic paleotemperatures across the Runangan-Whaingaroan (Eocene-Oligocene) boundary in a New Zealand shelf sequence

    Get PDF
    Oxygen isotopic compositions of the tests of mainly benthic foraminifera, from sections of conformable Late Eocene (Runangan) to Early Oligocene (Whaingaroan) shelf mudstones, at both Cape Foulwind and Port Elizabeth, western South Island, indicate that shelf sea paleotemperatures followed the global open-ocean trend towards a Paleogene minimum near the Eocene-Oligocene boundary. Throughout the latest Eocene, temperatures declined steadily by 3°C, showed a temporary minor warming at the Eocenc-Oligocene boundary, dropped sharply by 2°C in the Early Oligocene, and ameliorated significantly later in the Early Oligocene. The qualitative temperature trends for New Zealand shelf waters at this time are similar to those inferred from earlier paleontologic syntheses and limited oxygen isotopic work, but involve a range of temperatures within the warm and cool temperate climatic zones and an absolute temperature depression across the Eocene-Oligocene boundary of only 5°C from about 17 to 12°C. Results are consistent with isotopic paleotemperatures determined from deep-sea sediment cores south of New Zealand where the cooling is inferred to mark the onset of production of Antarctic bottom waters at near-freezing temperatures

    Stratigraphy and reserves of pumiceous sand deposits in Perry's 'Asparagus Block' at Horotiu

    Get PDF
    The stratigraphic relationships between the deposits of the Hinuera Formation and the Taupo Pumice Alluvium are described over a 16 ha plot of land known as the 'Asparagus Block' at Horotiu. The Hinuera Formation is exposed at the surface at the southern end of this block, and is overlain by a wedge of Taupo Pumice Alluvium which increases in thickness from 0 to 8 m northwards across the block. Lithofacies in the Hinuera Formation are dominated by trough cross-bedded gravelly sands (lithofacies AI), with common cross-laminated sands (lithofacies B) and massive to horizontally laminated silts (lithofacies D). The pumice content of these deposits is mainly 70%. Lithofacies in the Taupo Pumice Alluvium are dominated by horizontally to inclined (tabular cross-) bedded slightly gravelly sands and sands (lithofacies G 1/2), with common occurrences of horizontally bedded to massive sandy silts (lithofacies D). The pumice content of these Taupo deposits is high, typically >80%. Cross-sections are presented showing an interpreted subsurface distribution of these lithofacies from south to north through the 'Asparagus Block'. The estimated reserve of extractable pumice sand from the block is of the order of about 400,000 to 450,000 m³

    Highly Deformable Graphene Kirigami

    Full text link
    Graphene's exceptional mechanical properties, including its highest-known stiffness (1 TPa) and strength (100 GPa) have been exploited for various structural applications. However, graphene is also known to be quite brittle, with experimentally-measured tensile fracture strains that do not exceed a few percent. In this work, we introduce the notion of graphene kirigami, where concepts that have been used almost exclusively for macroscale structures are applied to dramatically enhance the stretchability of both zigzag and armchair graphene. Specifically, we show using classical molecular dynamics simulations that the yield and fracture strains of graphene can be enhanced by about a factor of three using kirigami as compared to standard monolayer graphene. This enhanced ductility in graphene should open up interesting opportunities not only mechanically, but also in coupling to graphene's electronic behavior.Comment: 5 pages, 7 figure

    Obituary − Emeritus Professor Dr John Davidson McCraw (1925−2014) MBE, MSc NZ, DSc Well, CRSNZ, FNZSSS.

    Get PDF
    John McCraw was an Earth scientist who began working as a pedologist with Soil Bureau, DSIR, then became the Foundation Professor of Earth Sciences at the University of Waikato in Hamilton, inspiring a new generation to study and work in Earth sciences . In retirement, John McCraw was an author and historian with a special emphasis on Central Otago as well as the Waikato region. Throughout his career, marked especially by exemplary leadership, accomplished administration, and commitment to his staff and students at the University of Waikato, John McCraw also contributed to the communities in which he lived through public service organizations and as a public speaker. He received a number of awards including an MBE, fellowship, and companionship, and, uniquely, is commemorated also with a glacier, a fossil, and a museum-based research room named for him. Emeritus Professor John McCraw passed away on the 14th of December, 2014. An obituary, entitled “Dedicated to earth science and his students”, was published in the Waikato Times on the 10th of January, 2015

    Highly Stretchable MoS2_2 Kirigami

    Full text link
    We report the results of classical molecular dynamics simulations focused on studying the mechanical properties of MoS2_{2} kirigami. Several different kirigami structures were studied based upon two simple non-dimensional parameters, which are related to the density of cuts, as well as the ratio of the overlapping cut length to the nanoribbon length. Our key finding is significant enhancements in tensile yield (by a factor of four) and fracture strains (by a factor of six) as compared to pristine MoS2_{2} nanoribbons. These results in conjunction with recent results on graphene suggest that the kirigami approach may be a generally useful one for enhancing the ductility of two-dimensional nanomaterials

    Polarization and valley switching in monolayer group-IV monochalcogenides

    Full text link
    Group-IV monochalcogenides are a family of two-dimensional puckered materials with an orthorhombic structure that is comprised of polar layers. In this article, we use first principles calculations to show the multistability of monolayer SnS and GeSe, two prototype materials where the direction of the puckering can be switched by application of tensile stress or electric field. Furthermore, the two inequivalent valleys in momentum space, which are dictated by the puckering orientation, can be excited selectively using linearly polarized light, and this provides an additional tool to identify the polarization direction. Our findings suggest that SnS and GeSe monolayers may have observable ferroelectricity and multistability, with potential applications in information storage

    Consumer Preferences for Pasture-Raised Animal Products: Results from Michigan

    Get PDF
    The pasture-based model of agriculture potentially offers opportunities for small- and medium-scale livestock producers in local, regional, and national markets. Our data indicate that many consumers value the attributes associated with locally produced pasture-raised products. We used ordered probit and binary probit analyses of these data to identify the demographic segments that showed the greatest interest in these attributes. This interest suggests a broad education and marketing effort to articulate salient attributes and to differentiate and increase the availability of these products in the marketplace.Demand and Price Analysis, Livestock Production/Industries,

    Accelerated search and design of stretchable graphene kirigami using machine learning

    Full text link
    Making kirigami-inspired cuts into a sheet has been shown to be an effective way of designing stretchable materials with metamorphic properties where the 2D shape can transform into complex 3D shapes. However, finding the optimal solutions is not straightforward as the number of possible cutting patterns grows exponentially with system size. Here, we report on how machine learning (ML) can be used to approximate the target properties, such as yield stress and yield strain, as a function of cutting pattern. Our approach enables the rapid discovery of kirigami designs that yield extreme stretchability as verified by molecular dynamics (MD) simulations. We find that convolutional neural networks, commonly used for classification in vision tasks, can be applied for regression to achieve an accuracy close to the precision of the MD simulations. This approach can then be used to search for optimal designs that maximize elastic stretchability with only 1000 training samples in a large design space of ∼4×106 candidate designs. This example demonstrates the power and potential of ML in finding optimal kirigami designs at a fraction of iterations that would be required of a purely MD or experiment-based approach, where no prior knowledge of the governing physics is known or available.P. Z. H. developed the codes, performed the simulations and data analysis, and wrote the manuscript with input from all authors. P. Z. H. and E. D. C. developed the machine learning methods. P. Z. H., D. K. C. and H. S. P. acknowledge the Hariri Institute Research Incubation Grant No. 2018-02-002 and the Boston University High Performance Shared Computing Cluster. P. Z. H. is grateful for the Hariri Graduate Fellowship. P. Z. H. thank Grace Gu and Adrian Yi for helpful discussions. (2018-02-002 - Hariri Graduate Fellowship)Published versio

    Eliminating Interstitial Cells with Nitrogen Mustard

    Get PDF
    corecore