29,770 research outputs found

    Dilations for Systems of Imprimitivity acting on Banach Spaces

    Full text link
    Motivated by a general dilation theory for operator-valued measures, framings and bounded linear maps on operator algebras, we consider the dilation theory of the above objects with special structures. We show that every operator-valued system of imprimitivity has a dilation to a probability spectral system of imprimitivity acting on a Banach space. This completely generalizes a well-kown result which states that every frame representation of a countable group on a Hilbert space is unitarily equivalent to a subrepresentation of the left regular representation of the group. The dilated space in general can not be taken as a Hilbert space. However, it can be taken as a Hilbert space for positive operator valued systems of imprimitivity. We also prove that isometric group representation induced framings on a Banach space can be dilated to unconditional bases with the same structure for a larger Banach space This extends several known results on the dilations of frames induced by unitary group representations on Hilbert spaces.Comment: 21 page

    Dilations of frames, operator valued measures and bounded linear maps

    Full text link
    We will give an outline of the main results in our recent AMS Memoir, and include some new results, exposition and open problems. In that memoir we developed a general dilation theory for operator valued measures acting on Banach spaces where operator-valued measures (or maps) are not necessarily completely bounded. The main results state that any operator-valued measure, not necessarily completely bounded, always has a dilation to a projection-valued measure acting on a Banach space, and every bounded linear map, again not necessarily completely bounded, on a Banach algebra has a bounded homomorphism dilation acting on a Banach space. Here the dilation space often needs to be a Banach space even if the underlying space is a Hilbert space, and the projections are idempotents that are not necessarily self-adjoint. These results lead to some new connections between frame theory and operator algebras, and some of them can be considered as part of the investigation about "noncommutative" frame theory.Comment: Contemporary Mathematics, 21 pages. arXiv admin note: substantial text overlap with arXiv:1110.583

    Clustered Graph Coloring and Layered Treewidth

    Full text link
    A graph coloring has bounded clustering if each monochromatic component has bounded size. This paper studies clustered coloring, where the number of colors depends on an excluded complete bipartite subgraph. This is a much weaker assumption than previous works, where typically the number of colors depends on an excluded minor. This paper focuses on graph classes with bounded layered treewidth, which include planar graphs, graphs of bounded Euler genus, graphs embeddable on a fixed surface with a bounded number of crossings per edge, amongst other examples. Our main theorem says that for fixed integers s,t,ks,t,k, every graph with layered treewidth at most kk and with no Ks,tK_{s,t} subgraph is (s+2)(s+2)-colorable with bounded clustering. In the s=1s=1 case, which corresponds to graphs of bounded maximum degree, we obtain polynomial bounds on the clustering. This greatly improves a corresponding result of Esperet and Joret for graphs of bounded genus. The s=3s=3 case implies that every graph with a drawing on a fixed surface with a bounded number of crossings per edge is 5-colorable with bounded clustering. Our main theorem is also a critical component in two companion papers that study clustered coloring of graphs with no Ks,tK_{s,t}-subgraph and excluding a fixed minor, odd minor or topological minor

    Phaseless computational imaging with a radiating metasurface

    Full text link
    Computational imaging modalities support a simplification of the active architectures required in an imaging system and these approaches have been validated across the electromagnetic spectrum. Recent implementations have utilized pseudo-orthogonal radiation patterns to illuminate an object of interest---notably, frequency-diverse metasurfaces have been exploited as fast and low-cost alternative to conventional coherent imaging systems. However, accurately measuring the complex-valued signals in the frequency domain can be burdensome, particularly for sub-centimeter wavelengths. Here, computational imaging is studied under the relaxed constraint of intensity-only measurements. A novel 3D imaging system is conceived based on 'phaseless' and compressed measurements, with benefits from recent advances in the field of phase retrieval. In this paper, the methodology associated with this novel principle is described, studied, and experimentally demonstrated in the microwave range. A comparison of the estimated images from both complex valued and phaseless measurements are presented, verifying the fidelity of phaseless computational imaging.Comment: 18 pages, 18 figures, articl
    • …
    corecore