15 research outputs found

    Decreased olfactory discrimination is associated with impulsivity in healthy volunteers

    Get PDF
    In clinical populations, olfactory abilities parallel executive function, implicating shared neuroanatomical substrates within the ventral prefrontal cortex. In healthy individuals, the relationship between olfaction and personality traits or certain cognitive and behavioural characteristics remains unexplored. We therefore tested if olfactory function is associated with trait and behavioural impulsivity in nonclinical individuals. Eighty-three healthy volunteers (50 females) underwent quantitative assessment of olfactory function (odour detection threshold, discrimination, and identifcation). Each participant was rated for trait impulsivity index using the Barratt Impulsiveness Scale and performed a battery of tasks to assess behavioural impulsivity (Stop Signal Task, SST; Information Sampling Task, IST; Delay Discounting). Lower odour discrimination predicted high ratings in non-planning impulsivity (Barratt Non-Planning impulsivity subscale); both, lower odour discrimination and detection threshold predicted low inhibitory control (SST; increased motor impulsivity). These fndings extend clinical observations to support the hypothesis that defcits in olfactory ability are linked to impulsive tendencies within the healthy population. In particular, the relationship between olfactory abilities and behavioural inhibitory control (in the SST) reinforces evidence for functional overlap between neural networks involved in both processes. These fndings may usefully inform the stratifcation of people at risk of impulse-control-related problems and support planning early clinical interventions

    Acute Effects of Cocaine on Human Brain Activity and Emotion

    Get PDF
    AbstractWe investigated brain circuitry mediating cocaine- induced euphoria and craving using functional MRI (fMRI). During double-blind cocaine (0.6 mg/kg) and saline infusions in cocaine-dependent subjects, the entire brain was imaged for 5 min before and 13 min after infusion while subjects rated scales for rush, high, low, and craving. Cocaine induced focal signal increases in nucleus accumbens/subcallosal cortex (NAc/SCC), caudate, putamen, basal forebrain, thalamus, insula, hippocampus, parahippocampal gyrus, cingulate, lateral prefrontal and temporal cortices, parietal cortex, striate/extrastriate cortices, ventral tegmentum, and pons and produced signal decreases in amygdala, temporal pole, and medial frontal cortex. Saline produced few positive or negative activations, which were localized to lateral prefrontal cortex and temporo-occipital cortex. Subjects who underwent repeat studies showed good replication of the regional fMRI activation pattern following cocaine and saline infusions, with activations on saline retest that might reflect expectancy. Brain regions that exhibited early and short duration signal maxima showed a higher correlation with rush ratings. These included the ventral tegmentum, pons, basal forebrain, caudate, cingulate, and most regions of lateral prefrontal cortex. In contrast, regions that demonstrated early but sustained signal maxima were more correlated with craving than with rush ratings; such regions included the NAc/SCC, right parahippocampal gyrus, and some regions of lateral prefrontal cortex. Sustained negative signal change was noted in the amygdala, which correlated with craving ratings. Our data demonstrate the ability of fMRI to map dynamic patterns of brain activation following cocaine infusion in cocaine-dependent subjects and provide evidence of dynamically changing brain networks associated with cocaine-induced euphoria and cocaine-induced craving
    corecore