269 research outputs found
The Georgia Tech High Sensitivity Microwave Measurement System
As observations and models of the planets become increasingly more accurate and sophisticated, the need for highly accurate laboratory measurements of the microwave properties of the component gases present in their atmospheres become ever more critical. This paper describes the system that has been developed at Georgia Tech to make these measurements at wavelengths ranging from 13.3 cm to 1.38 cm with a sensitivity of 0.05 dB/km at the longest wavelength and 0.6 db/km at the shortest wavelength
Characterizing Signal Loss in the 21 cm Reionization Power Spectrum: A Revised Study of PAPER-64
The Epoch of Reionization (EoR) is an uncharted era in our Universe's history
during which the birth of the first stars and galaxies led to the ionization of
neutral hydrogen in the intergalactic medium. There are many experiments
investigating the EoR by tracing the 21cm line of neutral hydrogen. Because
this signal is very faint and difficult to isolate, it is crucial to develop
analysis techniques that maximize sensitivity and suppress contaminants in
data. It is also imperative to understand the trade-offs between different
analysis methods and their effects on power spectrum estimates. Specifically,
with a statistical power spectrum detection in HERA's foreseeable future, it
has become increasingly important to understand how certain analysis choices
can lead to the loss of the EoR signal. In this paper, we focus on signal loss
associated with power spectrum estimation. We describe the origin of this loss
using both toy models and data taken by the 64-element configuration of the
Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER).
In particular, we highlight how detailed investigations of signal loss have led
to a revised, higher 21cm power spectrum upper limit from PAPER-64.
Additionally, we summarize errors associated with power spectrum error
estimation that were previously unaccounted for. We focus on a subset of
PAPER-64 data in this paper; revised power spectrum limits from the PAPER
experiment are presented in a forthcoming paper by Kolopanis et al. (in prep.)
and supersede results from previously published PAPER analyses.Comment: 25 pages, 18 figures, Accepted by Ap
What Next-Generation 21 cm Power Spectrum Measurements Can Teach Us About the Epoch of Reionization
A number of experiments are currently working towards a measurement of the 21
cm signal from the Epoch of Reionization. Whether or not these experiments
deliver a detection of cosmological emission, their limited sensitivity will
prevent them from providing detailed information about the astrophysics of
reionization. In this work, we consider what types of measurements will be
enabled by a next-generation of larger 21 cm EoR telescopes. To calculate the
type of constraints that will be possible with such arrays, we use simple
models for the instrument, foreground emission, and the reionization history.
We focus primarily on an instrument modeled after the
collecting area Hydrogen Epoch of Reionization Array (HERA) concept design, and
parameterize the uncertainties with regard to foreground emission by
considering different limits to the recently described "wedge" footprint in
k-space. Uncertainties in the reionization history are accounted for using a
series of simulations which vary the ionizing efficiency and minimum virial
temperature of the galaxies responsible for reionization, as well as the mean
free path of ionizing photons through the IGM. Given various combinations of
models, we consider the significance of the possible power spectrum detections,
the ability to trace the power spectrum evolution versus redshift, the
detectability of salient power spectrum features, and the achievable level of
quantitative constraints on astrophysical parameters. Ultimately, we find that
of collecting area is enough to ensure a very high significance
() detection of the reionization power spectrum in even the
most pessimistic scenarios. This sensitivity should allow for meaningful
constraints on the reionization history and astrophysical parameters,
especially if foreground subtraction techniques can be improved and
successfully implemented.Comment: 27 pages, 18 figures, updated SKA numbers in appendi
DACOTA: The dense array for cosmological transitions
The Epoch of Reionization (EoR) heralded the advent of the Universe we recognize today, containing stars, galaxies and super-massive black holes. A number of experiments to detect the red-shifted hydrogen signature of the atomic component of the intergalactic medium (IGM) are on-going (e.g. PAPER, MWA, LOFAR). Due to the faintness of the signal, the bright foregrounds, and the challenge of instrumental systematics, multiple techniques are essential to create a more robust detection and to provide the complete picture on the evolution of early galaxies
- …