122 research outputs found

    Effects of NiO nanoparticles on the magnetic properties and diffuse phase transition of BZT/NiO composites

    Get PDF
    A new composite system, Ba(Zr0.07Ti0.93)O3 (BZT93) ceramic/NiO nanoparticles, was fabricated to investigate the effect of NiO nanoparticles on the properties of these composites. M-H hysteresis loops showed an improvement in the magnetic behavior for higher NiO content samples plus modified ferroelectric properties. However, the 1 vol.% samples showed the optimum ferroelectric and ferromagnetic properties. Examination of the dielectric spectra showed that the NiO additive promoted a diffuse phase transition, and the two phase transition temperatures, as observed for BZT93, merged into a single phase transition temperature for the composite samples

    Phase transitions and ferroelectric properties in BiScO3-Bi(Zn1/2Ti1/2)O3-BaTiO3 solid solutions

    Get PDF
    Ceramics solid solutions within the ternary perovskite system Bi(Zn1/2Ti1/2)O3-BiScO3-BaTiO3 were synthesized via solid-state processing techniques. The crystal structure of sintered ceramics was analyzed by x-ray diffraction. A stable perovskite phase was obtained for all compositions with a BaTiO3 content greater than 50 mol %. Furthermore, a change in symmetry from pseudocubic to tetragonal was observed as the mole fraction of BaTiO3 increased. Dielectric measurements show a dielectric anomaly associated with a phase transformation over the temperature range of 30 °C–210 °C for all compositions. Examination of the polarization hysteresis behavior revealed weakly nonlinear hysteresis loops. With these data, ferroelectric phase diagrams were derived showing the transition between the pseudocubic relaxor behavior to the tetragonal normal ferroelectric behavior. This transition was also correlated with changes in the diffuseness parameter

    The KELT Follow-Up Network And Transit False-Positive Catalog: Pre-Vetted False Positives For TESS

    Get PDF
    The Kilodegree Extremely Little Telescope (KELT) project has been conducting a photometric survey of transiting planets orbiting bright stars for over 10 years. The KELT images have a pixel scale of ~23\u27\u27 pixel⁻¹—very similar to that of NASA\u27s Transiting Exoplanet Survey Satellite (TESS)—as well as a large point-spread function, and the KELT reduction pipeline uses a weighted photometric aperture with radius 3\u27. At this angular scale, multiple stars are typically blended in the photometric apertures. In order to identify false positives and confirm transiting exoplanets, we have assembled a follow-up network (KELT-FUN) to conduct imaging with spatial resolution, cadence, and photometric precision higher than the KELT telescopes, as well as spectroscopic observations of the candidate host stars. The KELT-FUN team has followed-up over 1600 planet candidates since 2011, resulting in more than 20 planet discoveries. Excluding ~450 false alarms of non-astrophysical origin (i.e., instrumental noise or systematics), we present an all-sky catalog of the 1128 bright stars (6 \u3c V \u3c 13) that show transit-like features in the KELT light curves, but which were subsequently determined to be astrophysical false positives (FPs) after photometric and/or spectroscopic follow-up observations. The KELT-FUN team continues to pursue KELT and other planet candidates and will eventually follow up certain classes of TESS candidates. The KELT FP catalog will help minimize the duplication of follow-up observations by current and future transit surveys such as TESS
    corecore