5,857 research outputs found

    Are Recent Peculiar Velocity Surveys Consistent?

    Get PDF
    We compare the bulk flow of the SMAC sample to the predictions of popular cosmological models and to other recent large-scale peculiar velocity surveys. Both analyses account for aliasing of small-scale power due to the sparse and non-uniform sampling of the surveys. We conclude that the SMAC bulk flow is in marginal conflict with flat COBE-normalized Lambda-CDM models which fit the cluster abundance constraint. However, power spectra which are steeper shortward of the peak are consistent with all of the above constraints. When recent large-scale peculiar velocity surveys are compared, we conclude that all measured bulk flows (with the possible exception of that of Lauer & Postman) are consistent with each other given the errors, provided the latter allow for `cosmic covariance'. A rough estimate of the mean bulk flow of all surveys (except Lauer & Postman) is ~400 km/s towards l=270, b=0.Comment: 8 pages, 3 figures. To appear in Proceedings of the Cosmic Flows Workshop, Victoria, B. C., Canada, July 1999, eds. S. Courteau, M. Strauss, and J. Willic

    Yersinia ruckeri isolates recovered from diseased Atlantic Salmon (Salmo salar) in Scotland are more diverse than those from Rainbow Trout (Oncorhynchus mykiss) and represent distinct subpopulations

    Get PDF
    Yersinia ruckeri is the etiological agent of enteric redmouth (ERM) disease of farmed salmonids. Enteric redmouth disease is traditionally associated with rainbow trout (Oncorhynchus mykiss, Walbaum), but its incidence in Atlantic salmon (Salmo salar) is increasing. Yersinia ruckeri isolates recovered from diseased Atlantic salmon have been poorly characterized, and very little is known about the relationship of the isolates associated with these two species. Phenotypic approaches were used to characterize 109 Y. ruckeri isolates recovered over a 14-year period from infected Atlantic salmon in Scotland; 26 isolates from infected rainbow trout were also characterized. Biotyping, serotyping, and comparison of outer membrane protein profiles identified 19 Y. ruckeri clones associated with Atlantic salmon but only five associated with rainbow trout; none of the Atlantic salmon clones occurred in rainbow trout and vice versa. These findings suggest that distinct subpopulations of Y. ruckeri are associated with each species. A new O serotype (designated O8) was identified in 56 biotype 1 Atlantic salmon isolates and was the most common serotype identified from 2006 to 2011 and in 2014, suggesting an increased prevalence during the time period sampled. Rainbow trout isolates were represented almost exclusively by the same biotype 2, serotype O1 clone that has been responsible for the majority of ERM outbreaks in this species within the United Kingdom since the 1980s. However, the identification of two biotype 2, serotype O8 isolates in rainbow trout suggests that vaccines containing serotypes O1 and O8 should be evaluated in both rainbow trout and Atlantic salmon for application in Scotland

    Stereoisomerism in pentaerythritol-bridged cyclotriphosphazene tri-spiranes: spiro and ansa 1,3-propanediyldioxy disubstituted derivatives

    Get PDF
    Four isomeric products were isolated and purified from the reaction of 1,3-propanediol with the tetra-spirane cyclophosphazene-organophosphate compound (1): viz. the di-monospiro (2a), di-monoansa (2b) and two monospiro-monoansa derivatives (2c) and (2d). It is shown by 31P NMR spectroscopy on addition of a chiral solvating agent (CSA) that both the di-monospiro (2a) and di-monoansa (2b) derivatives are racemates, as expected, whereas no splitting of NMR signals occurred on addition of CSA to solutions of (2c) and (2d). It is found by X-ray crystallography that the two monospiro-monoansa spirane derivatives, (2c) and (2d), are meso diastereoisomers, which represent a new case of the stereochemistry of bis di-substituted cyclophosphazene derivatives of (1). It is also observed from the 31P NMR spectrum of the reaction mixture, supported by the yields of pure compounds, that formation of a spiro group is about 4.5 times more likely than that of an ansa moiety under the conditions of the reaction

    Structural investigations of phosphorus-nitrogen compounds. 7. Relationships between physical properties, electron densities, reaction mechanisms and hydrogen-bonding motifs of N3P3Cl(6-n)(NHBut)(n) derivatives

    Get PDF
    A series of compounds of the N3P3Cl(6-n)(NHBut)n family (where n = 0, 1, 2, 4 and 6) are presented and their molecular parameters are related to trends in physical properties, which provides insight into a potential reaction mechanism for nucleophilic substitution. The crystal structures of N3P3Cl5(NHBut) and N3P3Cl2(NHBut)4 have been determined at 120K and those of N3P3Cl6 and N3P3Cl4(NHBut)2 have been re-determined at 120K. These are compared with the known structure of N3P3(NHBut)6 studied at 150K. Trends in molecular parameters (phosphazene ring, P-Cl & P-N(HBut) distances, PCl2 angles and endo- and exo-cyclic phosphazene ring parameters) across the series are observed. Hydrogen-bonding motifs are identified, characterised and compared. Both the molecular and hydrogen bonding parameters are related to the electron distribution in bonds and the derived basicities of the cyclophosphazene series of compounds. These findings provide evidence for a proposed mechanism for nucleophilic substitution at a phosphorus site bearing a PCl(NHBut) moiety

    Selenium Enrichment of Laboratory Scale Silos Using Lactic Acid Bacteria Inoculum

    Get PDF
    Selenium (Se) is a trace element essential for normal cellular function, which has been linked with reduced risk of cancer, cardiovascular disease, cognitive decline and thyroid disease in humans. Se deficiency in livestock is associated with white muscle disease, retained placenta, ill-thrift and mastitis. Where Se status or bioavailability from the soil for plants is poor, livestock rely on supplemental Se in their diets either as sodium selenite (inorganic form) or seleno-yeast (organic form). As lactic acid bacteria have been shown to incorporate Se as either organic or elemental (Nano-Se) (Eszenyi et al., 2011) there may be potential to use silage inoculant bacteria to improve the Se status of feed to provide Se requirements to livestock. In a previous study (Fleming et al., 2015) LAB isolates were screened for their ability to convert inorganic sodium selenite into Nano-Se and organic-Se (predominately Selenocysteine). Based on this ability and reduced retardation on growth properties when the Se was added, three LAB were selected for the current study to determine their potential as silage inoculants to increase bioavailable forms of Se (Nano and organic) in silage

    2009src0404

    Get PDF

    2008src1195

    Get PDF

    2008src0391

    Get PDF
    corecore