3,633 research outputs found
Optimization of carbon and energy utilization through differential translational efficiency.
Control of translation is vital to all species. Here we employ a multi-omics approach to decipher condition-dependent translational regulation in the model acetogen Clostridium ljungdahlii. Integration of data from cells grown autotrophically or heterotrophically revealed that pathways critical to carbon and energy metabolism are under strong translational regulation. Major pathways involved in carbon and energy metabolism are not only differentially transcribed and translated, but their translational efficiencies are differentially elevated in response to resource availability under different growth conditions. We show that translational efficiency is not static and that it changes dynamically in response to mRNA expression levels. mRNAs harboring optimized 5'-untranslated region and coding region features, have higher translational efficiencies and are significantly enriched in genes encoding carbon and energy metabolism. In contrast, mRNAs enriched in housekeeping functions harbor sub-optimal features and have lower translational efficiencies. We propose that regulation of translational efficiency is crucial for effectively controlling resource allocation in energy-deprived microorganisms
Hematology and Clinical Chemistry Reference Ranges for Laboratory-Bred Natal Multimammate Mice (Mastomys natalensis)
Laboratory-controlled physiological data for the multimammate rat (Mastomys natalensis) are scarce, despite this species being a known reservoir and vector for zoonotic viruses, including the highly pathogenic Lassa virus, as well as other arenaviruses and many species of bacteria. For this reason, M. natalensis is an important rodent for the study of host-virus interactions within laboratory settings. Herein, we provide basic blood parameters for age- and sex-distributed animals in regards to blood counts, cell phenotypes and serum chemistry of a specific-pathogen-monitored M.natalensis breeding colony, to facilitate scientific insight into this important and widespread rodent species.Peer Reviewe
Behavioral Consequences of NMDA Antagonist-Induced Neuroapoptosis in the Infant Mouse Brain
Background: Exposure to NMDA glutamate antagonists during the brain growth spurt period causes widespread neuroapoptosis in the rodent brain. This period in rodents occurs during the first two weeks after birth, and corresponds to the third trimester of pregnancy and several years after birth in humans. The developing human brain may be exposed to NMDA antagonists through drug-abusing mothers or through anesthesia. Methodology/Principal Findings: We evaluated the long-term neurobehavioral effects of mice exposed to a single dose of the NMDA antagonist, phencyclidine (PCP), or saline, on postnatal day 2 (P2) or P7, or on both P2 and P7. PCP treatment on P2 + P7 caused more severe cognitive impairments than either single treatment. Histological examination of acute neuroapoptosis resulting from exposure to PCP indicated that the regional pattern of degeneration induced by PCP in P2 pups was different from that in P7 pups. The extent of damage when evaluated quantitatively on P7 was greater for pups previously treated on P2 compared to pups treated only on P7. Conclusions: These findings signify that PCP induces different patterns of neuroapoptosis depending on the developmental age at the time of exposure, and that exposure at two separate developmental ages causes more severe neuropathological and neurobehavioral consequences than a single treatment
The Cuspy LINER Nucleus of the S0/a Galaxy NGC 2681
The nucleus of the bulge-dominated, multiply-barred S0/a galaxy NGC 2681 is
studied in detail, using high resolution Hubble Space Telescope FOC and NICMOS
imaging and FOS spectroscopy. The ionised gas central velocity dispersion is
found to increase by a factor ~2 when narrowing the aperture from R~1.5"
(ground) to R~0.1" (FOS). Dynamical modeling of these velocity dispersions
suggests that NGC 2681 does host a supermassive black hole (BH) for which one
can estimate a firm mass upper limit M_BH < 6*10^7 Solar Masses. This upper
limit is consistent with the relation between the central BH mass and velocity
dispersion M_BH - sigma known for other galaxies. The emission line ratios
place the nucleus of NGC 2681 among LINERs. It is likely that the emission line
region comes from a rather mild, but steady, feeding of gas to the central BH
in this galaxy. The inner stellar population lacks any measurable color
gradient (to a radius of 0.6 kpc) from the infrared to the ultraviolet,
consistently with FOC, FOS and IUE data, all indicating that this system
underwent a starburst ~1 Gyr ago that encompassed its whole interior, down to
its very center. The most likely source of such a widely-distributed starburst
is the dumping of tidally-extruded gas from a galaxy neighbor. If so, then NGC
2681 can be considered as the older brother of M82, seen face-on as opposed to
the edge-on view we have for M82.Comment: 25 pages, LaTeX, with 10 PostScript figures, to appear in The
Astrophysical Journa
Angular Radii of Stars via Microlensing
We outline a method by which the angular radii of giant and main sequence
stars in the Galactic bulge can be measured to a few percent accuracy. The
method combines ground-based photometry of caustic-crossing bulge microlensing
events, with a handful of precise astrometric measurements of the lensed star
during the event, to measure the angular radius of the source, theta_*. Dense
photometric coverage of one caustic crossing yields the crossing timescale dt.
Less frequent coverage of the entire event yields the Einstein timescale t_E
and the angle phi of source trajectory with respect to the caustic. The
photometric light curve solution predicts the motion of the source centroid up
to an orientation on the sky and overall scale. A few precise astrometric
measurements therefore yield theta_E, the angular Einstein ring radius. Then
the angular radius of the source is obtained by theta_*=theta_E(dt/t_E)
sin(phi). We argue that theta_* should be measurable to a few percent accuracy
for Galactic bulge giant stars using ground-based photometry from a network of
small (1m-class) telescopes, combined with astrometric observations with a
precision of ~10 microarcsec to measure theta_E. We find that a factor of ~50
times fewer photons are required to measure theta_E to a given precision for
binary-lens events than single-lens events. Adopting parameters appropriate to
the Space Interferometry Mission (SIM), ~7 min of SIM time is required to
measure theta_E to ~5% accuracy for giant sources in the bulge. For
main-sequence sources, theta_E can be measured to ~15% accuracy in ~1.4 hours.
With 10 hrs of SIM time, it should be possible to measure theta_* to ~5% for
\~80 giant stars, or to 15% for ~7 main sequence stars. A byproduct of such a
campaign is a significant sample of precise binary-lens mass measurements.Comment: 13 pages, 3 figures. Revised version, minor changes, required SIM
integration times revised upward by ~60%. Accepted to ApJ, to appear in the
March 20, 2003 issue (v586
EGFR is required for Wnt9a-Fzd9b signalling specificity in haematopoietic stem cells.
Wnt signalling drives many processes in development, homeostasis and disease; however, the role and mechanism of individual ligand-receptor (Wnt-Frizzled (Fzd)) interactions in specific biological processes remain poorly understood. Wnt9a is specifically required for the amplification of blood progenitor cells during development. Using genetic studies in zebrafish and human embryonic stem cells, paired with in vitro cell biology and biochemistry, we determined that Wnt9a signals specifically through Fzd9b to elicit β-catenin-dependent Wnt signalling that regulates haematopoietic stem and progenitor cell emergence. We demonstrate that the epidermal growth factor receptor (EGFR) is required as a cofactor for Wnt9a-Fzd9b signalling. EGFR-mediated phosphorylation of one tyrosine residue on the Fzd9b intracellular tail in response to Wnt9a promotes internalization of the Wnt9a-Fzd9b-LRP signalosome and subsequent signal transduction. These findings provide mechanistic insights for specific Wnt-Fzd signals, which will be crucial for specific therapeutic targeting and regenerative medicine
- …