134 research outputs found
How Should Research And Monitoring Be Integrated?
Scientific knowledge of Chesapeake Bay and tidal tributaries has accumulated over many years beginning mostly with descriptive surveys prior to the 1960\u27s and 1970\u27s and evolving towards a coupling of monitoring and research in recent years. This essay discusses the need to more fully couple monitoring and research efforts in the Bay system because such a union of efforts is argued to be the most effective way to assess gross trends in the health of the system (monitoring) and to understand the basic forces causing these trends (research). We argue that together they provide part of the framework necessary for effective management of the living resources of the bay region.https://scholarworks.wm.edu/vimsbooks/1176/thumbnail.jp
A review of fMRI simulation studies
Simulation studies that validate statistical techniques for fMRI data are challenging due to the complexity of the data. Therefore, it is not surprising that no common data generating process is available (i.e. several models can be found to model BOLD activation and noise). Based on a literature search, a database of simulation studies was compiled. The information in this database was analysed and critically evaluated focusing on the parameters in the simulation design, the adopted model to generate fMRI data, and on how the simulation studies are reported. Our literature analysis demonstrates that many fMRI simulation studies do not report a thorough experimental design and almost consistently ignore crucial knowledge on how fMRI data are acquired. Advice is provided on how the quality of fMRI simulation studies can be improved
Opponent-process additivity--I: Red/green equilibria
A red/green equilibrium light is one which appears neither reddish nor greenish (i.e. either uniquely yellow, uniquely blue, or achromatic). A subset of spectral and nonspectral red/green equilibria was determined for several luminance levels, in order to test whether the set of all such equilibria is closed under linear color-mixture operations.The spectral loci of equilibrium yellow and blue showed either no variation or visually insignificant variation over a range of 1-2 log10 unit. There were no trends that were repeatable across observers. We concluded that spectral red/green equilibria are closed under scalar multiplication; consequently they are invariant hues relative to the Bezold-Brucke shift.The additive mixture of yellow and blue equilibrium wavelengths, in any luminance ratio, is also an equilibrium light. Small changes of the yellowish component of a mixture toward redness or greeness must be compensated by predictable changes of the bluish component of the mixture toward greenness or redness. We concluded that yellow and blue equilibria are complementary relative to an equilibrium white; that desaturation of a yellow or blue equilibrium light with such a white produces no Abney hue shift; and that the set of red/green equilibria is closed under general linear operations.One consequence is that the red/green chromatic-response function, measured by the Jameson-Hurvich technique of cancellation to equilibrium, is a linear function of the individual's color-matching coordinates. A second consequence of linear closure of equilibria is a strong constraint on the class of combination rules by which receptor outputs are recoded into the red/green opponent process.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/22247/1/0000683.pd
Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95444/1/jgre2665.pd
Recommended from our members
Post-traumatic ocular lymphoma in three rabbits (Oryctolagus cuniculus)
This report describes post-traumatic ocular lymphoma in 3 companion rabbits; 2 rabbits with unilateral disease and 1 with bilateral disease. Historical findings suggestive of a traumatic event included either external unilateral ocular trauma or bilateral phacoemulsification. Severe corneal changes, presence of an anterior chamber mass(es), low intraocular pressures, and ocular discomfort were noted on ophthalmic examinations. All eyes were treated for variable courses with standard ophthalmic topical medications (antibiotic, anti-inflammatories, and steroid) and systemic anti-inflammatories. Based upon progression of disease, all affected eyes were ultimately enucleated; lenticular capsular rupture and a round cell neoplasm effacing normal structures with variable mitotic indices were noted on histopathology. Neoplastic lymphocytes strongly expressed CD79a via immunohistochemistry and lacked expression for CD3, indicating B lymphocyte lineage and not of T cell lineage. A single animal had evidence of local metastasis to a regional lymph node. Post-traumatic sarcomas have been reported in this species previously, however, these cases are the first reports of this novel round cell variant, named post-traumatic ocular lymphoma due to the B cell lineage confirmed through immunohistochemistry. Clinicians should be aware of this clinical presentation and the possibility of metastasis when evaluating ocular pathology in this species. Copyright 2018 Elsevier Inc. All rights reserved
Task-Dependent Individual Differences in Prefrontal Connectivity
Recent advances in neuroimaging have permitted testing of hypotheses regarding the neural bases of individual differences, but this burgeoning literature has been characterized by inconsistent results. To test the hypothesis that differences in task demands could contribute to between-study variability in brain-behavior relationships, we had participants perform 2 tasks that varied in the extent of cognitive involvement. We examined connectivity between brain regions during a low-demand vigilance task and a higher-demand digit–symbol visual search task using Granger causality analysis (GCA). Our results showed 1) Significant differences in numbers of frontoparietal connections between low- and high-demand tasks 2) that GCA can detect activity changes that correspond with task-demand changes, and 3) faster participants showed more vigilance-related activity than slower participants, but less visual-search activity. These results suggest that relatively low-demand cognitive performance depends on spontaneous bidirectionally fluctuating network activity, whereas high-demand performance depends on a limited, unidirectional network. The nature of brain-behavior relationships may vary depending on the extent of cognitive demand. High-demand network activity may reflect the extent to which individuals require top-down executive guidance of behavior for successful task performance. Low-demand network activity may reflect task- and performance monitoring that minimizes executive requirements for guidance of behavior
Ingestion of micronutrient fortified breakfast cereal has no influence on immune function in healthy children: A randomized controlled trial
<p>Abstract</p> <p>Background</p> <p>This study investigated the influence of 2-months ingestion of an "immune" nutrient fortified breakfast cereal on immune function and upper respiratory tract infection (URTI) in healthy children during the winter season.</p> <p>Methods</p> <p>Subjects included 73 children (N = 42 males, N = 31 females) ranging in age from 7 to 13 years (mean ± SD age, 9.9 ± 1.7 years), and 65 completed all phases of the study. Subjects were randomized to one of three groups--low, moderate, or high fortification--with breakfast cereals administered in double blinded fashion. The "medium" fortified cereal contained B-complex vitamins, vitamins A and C, iron, zinc, and calcium, with the addition of vitamin E and higher amounts of vitamins A and C, and zinc in the "high" group. Immune measures included delayed-typed hypersensitivity, global IgG antibody response over four weeks to pneumococcal vaccination, salivary IgA concentration, natural killer cell activity, and granulocyte phagocytosis and oxidative burst activity. Subjects under parental supervision filled in a daily log using URTI symptoms codes.</p> <p>Results</p> <p>Subjects ingested 3337 ± 851 g cereal during the 2-month study, which represented 14% of total diet energy intake and 20-85% of selected vitamins and minerals. Despite significant increases in nutrient intake, URTI rates and pre- to- post-study changes in all immune function measures did not differ between groups.</p> <p>Conclusions</p> <p>Data from this study indicate that ingestion of breakfast cereal fortified with a micronutrient blend for two winter months by healthy, growing children does not significantly influence biomarkers for immune function or URTI rates.</p
Atypicalities in Perceptual Adaptation in Autism Do Not Extend to Perceptual Causality
A recent study showed that adaptation to causal events (collisions) in adults caused subsequent events to be less likely perceived as causal. In this study, we examined if a similar negative adaptation effect for perceptual causality occurs in children, both typically developing and with autism. Previous studies have reported diminished adaptation for face identity, facial configuration and gaze direction in children with autism. To test whether diminished adaptive coding extends beyond high-level social stimuli (such as faces) and could be a general property of autistic perception, we developed a child-friendly paradigm for adaptation of perceptual causality. We compared the performance of 22 children with autism with 22 typically developing children, individually matched on age and ability (IQ scores). We found significant and equally robust adaptation aftereffects for perceptual causality in both groups. There were also no differences between the two groups in their attention, as revealed by reaction times and accuracy in a change-detection task. These findings suggest that adaptation to perceptual causality in autism is largely similar to typical development and, further, that diminished adaptive coding might not be a general characteristic of autism at low levels of the perceptual hierarchy, constraining existing theories of adaptation in autism.16 page(s
Connectivity of the Primate Superior Colliculus Mapped by Concurrent Microstimulation and Event-Related fMRI
Background: Neuroanatomical studies investigating the connectivity of brain areas have heretofore employed procedures in which chemical or viral tracers are injected into an area of interest, and connected areas are subsequently identified using histological techniques. Such experiments require the sacrifice of the animals and do not allow for subsequent electrophysiological studies in the same subjects, rendering a direct investigation of the functional properties of anatomically identified areas impossible. Methodology/Principal Findings: Here, we used a combination of microstimulation and fMRI in an anesthetized monkey preparation to study the connectivity of the superior colliculus (SC). Microstimulation of the SC resulted in changes in the blood oxygenation level-dependent (BOLD) signals in the SC and in several cortical and subcortical areas consistent with the known connectivity of the SC in primates. Conclusions/Significance: These findings demonstrates that the concurrent use of microstimulation and fMRI can be used to identify brain networks for further electrophysiological or fMRI investigation
- …