3 research outputs found

    Surface Properties of Ti

    No full text
    Ti2AlV alloys are commonly employed as structural materials in electronics, metallurgy, and other industries because of their outstanding properties. Knowledge about their surface properties is lacking and limited at the atomic level. In this work, structural, electronic, and stabilities of Ti2AlV surfaces were investigated using the density functional theory approach. This study also looked at the surface energies and work functions of various surfaces. According to our findings, it was found that the (110) surface is thermodynamically stable with lower surface energy than the (100) surface. It was discovered that the surface energy increases with regard to the thickness of the surface slab. Furthermore, the work function of the (110) surface was found to be increasing than that of the (100) surface. Moreover, the work function was found to increase with increasing number of layers in both surfaces. The partial and total density of states of Ti2AlV (100) and (110) were also studied. It was also found that the Fermi level lies at the minimum curve in the TDOS graphs for the Ti2AlV (110) surface while lies at the maximum in (100) surface

    Ethylenediamine functionalized waste polyethylene terephthalate-derived metal-organic framework for adsorption of palladium ions from aqueous solutions

    No full text
    The recovery of palladium metal is essential in order to meet its growing global demand and also to address water pollution crisis. Herein, MIL-101(Cr)/ED was fabricated from waste polyethylene terephthalate (PET) bottles and modified using ethylenediamine (ED) to retrieve divalent palladium (Pd(II)) metal ions from aqueous environment. The successful grafting of ED moieties onto MIL-101(Cr) was established by the appearance of broad bands at around 2800–3300 cm−1 on the Fourier transform infrared spectrum which was supported by the increase in binding energy using density functional theory. The adsorption experiments revealed that higher Pd(II) ion intake occurred using 30 mg of MIL-101(Cr)/ED in acidic media of pH = 3.0. The data fit better on the Langmuir isotherm with the correlation coefficient (R2) 0.9089. At 25 °C, the MIL-101(Cr)/ED achieved a substantial enhancement in the intake capacities of 454.2 mg.g−1. Kinetics data demonstrated to comply with pseudo-second order, achieving a rapid rate of Pd(II) adsorption by the MIL-101(Cr)/ED in less than 3 min given by the rate constant k2 = 0.02065 g.mg−1.min−1. The MIL-101(Cr)/ED has high affinity for Pd(II) ions as more than 80% removal was achieved even in presence of other ions. These observations revealed the potential utilization of MIL-101(Cr)/ED as an adsorbent to efficiently extract Pd(II) ions from wastewater

    China's Energy Policy & Investments and Their Impact on the Sub-Saharan African Region

    No full text
    corecore