4,979 research outputs found

    Sources of Financial Stress in Agricultural Cooperatives

    Get PDF
    Financial stress in agricultural cooperatives may be due to a combination of three factors: inadequate profitability, excessive debt, or high interest rates. This paper uses an analytical technique to determine the relative degree of financial stress in agricultural cooperatives attributable to each factor. Roughly 30 percent of agricultural cooperatives in our sample suffered financial stress from 1987 through 1992. The analysis indicates that the greatest portion of financial stress, 54 percent, originated from low earnings. High interest rates accounted for roughly 24 percent of the financial stress while leverage accounts for the remaining 22 percent. The results also indicate that smaller cooperatives are more than twice as likely to face financial stress than larger cooperatives. Small cooperatives are more likely to face profitability problems whereas large cooperatives are more likely to face debt and interest rate problems.Agribusiness, Agricultural Finance,

    Lack of Z-DNA Conformation in Mitomycin-Modified Polynucleotides Having Inverted Circular Dichroism

    Get PDF
    Poly(dG-dC)· poly(dG-dC) and Micrococcus lysodeikticus DNA were modified by exposure to reductively activated mitomycin C, an antitumor antibiotic. The resulting covalent drug-polynucleotide complexes displayed varying degrees of CD inversions, which are strikingly similar to the inverted spectrum observed with Z-DNA. The following criteria have been used to establish, however, that the inverted CD pattern seen in mitomycin C-polynucleotide complexes does not reflect a Z-DNA conformation. (i) The ethanol-induced transition of poly(dG-dC)· poly(dG-dC) from B to Z conformation is not facilitated but rather is inhibited by mitomycin C modification. This may be due to the presence of crosslinks. (ii) Radioimmunoassay indicated no competition for Z-DNA-specific antibody by any of the mitomycin C-modified polynucleotides. (iii) 31P NMR of the complexes yielded a single relatively narrow resonance, which is inconsistent with the dinucleotide repeat characteristic of Z-DNA. Alternative explanations for the inverted CD pattern include a drug-induced left-handed but non-Z conformational change or the superposition of an induced CD onto the CD of B-DNA due to drug-base electronic interactions. These results illustrate the need for caution in interpreting CD changes alone as an indication of Z-DNA conformation

    Simulink-Based Simulation Architecture for Evaluating Controls for Aerospace Vehicles (SAREC-ASV)

    Get PDF
    The Simulation Architecture for Evaluating Controls for Aerospace Vehicles (SAREC-ASV) is a Simulink-based approach to providing an engineering quality desktop simulation capability for finding trim solutions, extracting linear models for vehicle analysis and control law development, and generating open-loop and closed-loop time history responses for control system evaluation. It represents a useful level of maturity rather than a finished product. The layout is hierarchical and supports concurrent component development and validation, with support from the Concurrent Versions System (CVS) software management tool. Real Time Workshop (RTW) is used to generate pre-compiled code for substantial component modules, and templates permit switching seamlessly between original Simulink and code compiled for various platforms. Two previous limitations are addressed. Turn around time for incorporating tabular model components was improved through auto-generation of required Simulink diagrams based on data received in XML format. The layout was modified to exploit a Simulink "compile once, evaluate multiple times" capability for zero elapsed time for use in trimming and linearizing. Trim is achieved through a Graphical User Interface (GUI) with a narrow, script definable interface to the vehicle model which facilitates incorporating new models

    Assessing Alternatives for Directional Detection of a WIMP Halo

    Get PDF
    The future of direct terrestrial WIMP detection lies on two fronts: new, much larger low background detectors sensitive to energy deposition, and detectors with directional sensitivity. The former can large range of WIMP parameter space using well tested technology while the latter may be necessary if one is to disentangle particle physics parameters from astrophysical halo parameters. Because directional detectors will be quite difficult to construct it is worthwhile exploring in advance generally which experimental features will yield the greatest benefits at the lowest costs. We examine the sensitivity of directional detectors with varying angular tracking resolution with and without the ability to distinguish forward versus backward recoils, and compare these to the sensitivity of a detector where the track is projected onto a two-dimensional plane. The latter detector regardless of where it is placed on the Earth, can be oriented to produce a significantly better discrimination signal than a 3D detector without this capability, and with sensitivity within a factor of 2 of a full 3D tracking detector. Required event rates to distinguish signals from backgrounds for a simple isothermal halo range from the low teens in the best case to many thousands in the worst.Comment: 4 pages, including 2 figues and 2 tables, submitted to PR

    The infrared imaging spectrograph (IRIS) for TMT: sensitivities and simulations

    Get PDF
    We present sensitivity estimates for point and resolved astronomical sources for the current design of the InfraRed Imaging Spectrograph (IRIS) on the future Thirty Meter Telescope (TMT). IRIS, with TMT's adaptive optics system, will achieve unprecedented point source sensitivities in the near-infrared (0.84 - 2.45 {\mu}m) when compared to systems on current 8-10m ground based telescopes. The IRIS imager, in 5 hours of total integration, will be able to perform a few percent photometry on 26 - 29 magnitude (AB) point sources in the near-infrared broadband filters (Z, Y, J, H, K). The integral field spectrograph, with a range of scales and filters, will achieve good signal-to-noise on 22 - 26 magnitude (AB) point sources with a spectral resolution of R=4,000 in 5 hours of total integration time. We also present simulated 3D IRIS data of resolved high-redshift star forming galaxies (1 < z < 5), illustrating the extraordinary potential of this instrument to probe the dynamics, assembly, and chemical abundances of galaxies in the early universe. With its finest spatial scales, IRIS will be able to study luminous, massive, high-redshift star forming galaxies (star formation rates ~ 10 - 100 M yr-1) at ~100 pc resolution. Utilizing the coarsest spatial scales, IRIS will be able to observe fainter, less massive high-redshift galaxies, with integrated star formation rates less than 1 M yr-1, yielding a factor of 3 to 10 gain in sensitivity compared to current integral field spectrographs. The combination of both fine and coarse spatial scales with the diffraction-limit of the TMT will significantly advance our understanding of early galaxy formation processes and their subsequent evolution into presentday galaxies.Comment: SPIE Astronomical Instrumentation 201

    Transmission Line Resistance Compression Networks and Applications to Wireless Power Transfer

    Get PDF
    Microwave-to-dc rectification is valuable in many applications, including RF energy recovery, dc-dc conversion, and wireless power transfer. In such applications, it is desired for the microwave rectifier system to provide a constant RF input impedance. Consequently, variation in rectifier input impedance over varying incident power levels can hurt system performance. To address this challenge, we introduce multiway transmission line resistance compression networks (TLRCNs) for maintaining near-constant input impedance in RF-to-dc rectifier systems. A development of TLRCNs is presented, along with their application to RF-to-dc conversion and wireless power transfer. We derive analytical expressions for the behavior of TLRCNs, and describe two design methodologies applicable to both single and multistage implementations. A 2.45-GHz four-way TLRCN network is implemented and applied to create a 4-W resistance compressed rectifier system that has narrow-range resistive input characteristics over a 10-dB power range. It is demonstrated to improve the impedance match to mostly resistive but variable input impedance class-E rectifiers over a 10-dB power range. The resulting TLRCN plus rectifier system has >50% RF-to-dc conversion efficiency over a >10-dB input power range at 2.45 GHz (peak efficiency 70%), and standing wave ratio <;1.1 over a 7.7-dB range, despite a nonnegligible reactive component in the rectifier loads
    • …
    corecore