98 research outputs found
The growth and form of knowledge networks by kinesthetic curiosity
Throughout life, we might seek a calling, companions, skills, entertainment,
truth, self-knowledge, beauty, and edification. The practice of curiosity can
be viewed as an extended and open-ended search for valuable information with
hidden identity and location in a complex space of interconnected information.
Despite its importance, curiosity has been challenging to computationally model
because the practice of curiosity often flourishes without specific goals,
external reward, or immediate feedback. Here, we show how network science,
statistical physics, and philosophy can be integrated into an approach that
coheres with and expands the psychological taxonomies of specific-diversive and
perceptual-epistemic curiosity. Using this interdisciplinary approach, we
distill functional modes of curious information seeking as searching movements
in information space. The kinesthetic model of curiosity offers a vibrant
counterpart to the deliberative predictions of model-based reinforcement
learning. In doing so, this model unearths new computational opportunities for
identifying what makes curiosity curious
Multiscale and multimodal network dynamics underpinning working memory
Working memory (WM) allows information to be stored and manipulated over
short time scales. Performance on WM tasks is thought to be supported by the
frontoparietal system (FPS), the default mode system (DMS), and interactions
between them. Yet little is known about how these systems and their
interactions relate to individual differences in WM performance. We address
this gap in knowledge using functional MRI data acquired during the performance
of a 2-back WM task, as well as diffusion tensor imaging data collected in the
same individuals. We show that the strength of functional interactions between
the FPS and DMS during task engagement is inversely correlated with WM
performance, and that this strength is modulated by the activation of FPS
regions but not DMS regions. Next, we use a clustering algorithm to identify
two distinct subnetworks of the FPS, and find that these subnetworks display
distinguishable patterns of gene expression. Activity in one subnetwork is
positively associated with the strength of FPS-DMS functional interactions,
while activity in the second subnetwork is negatively associated. Further, the
pattern of structural linkages of these subnetworks explains their differential
capacity to influence the strength of FPS-DMS functional interactions. To
determine whether these observations could provide a mechanistic account of
large-scale neural underpinnings of WM, we build a computational model of the
system composed of coupled oscillators. Modulating the amplitude of the
subnetworks in the model causes the expected change in the strength of FPS-DMS
functional interactions, thereby offering support for a mechanism in which
subnetwork activity tunes functional interactions. Broadly, our study presents
a holistic account of how regional activity, functional interactions, and
structural linkages together support individual differences in WM in humans
Evaluation of confound regression strategies for the mitigation of micromovement artifact in studies of dynamic resting-state functional connectivity and multilayer network modularity
Dynamic functional connectivity reflects the spatiotemporal organization of spontaneous brain activity in health and disease. Dynamic functional connectivity may be susceptible to artifacts induced by participant motion. This report provides a systematic evaluation of 12 commonly used participant-level confound regression strategies designed to mitigate the effects of micromovements in a sample of 393 youths (ages 8–22 years). Each strategy was evaluated according to a number of benchmarks, including (a) the residual association between participant motion and edge dispersion, (b) distance-dependent effects of motion on edge dispersion, (c) the degree to which functional subnetworks could be identified by multilayer modularity maximization, and (d) measures of module reconfiguration, including node flexibility and node promiscuity. Results indicate variability in the effectiveness of the evaluated pipelines across benchmarks. Methods that included global signal regression were the most consistently effective de-noising strategies. Dynamic functional connectivity reflects the spatiotemporal organization of spontaneous brain activity in health and disease, but it can be susceptible to motion artifacts. Here we provide a systematic evaluation of 12 commonly used participant-level confound regression strategies designed to mitigate the effects of micromovements in a sample of 393 youths (ages 8–22 years). Each strategy was evaluated according to the residual association between participant motion and edge dispersion, distance-dependent effects of motion on edge dispersion, the degree to which functional subnetworks could be identified by multilayer modularity maximization, and measures of module reconfiguration, including node flexibility and node promiscuity. Results indicate variability in the effectiveness of the evaluated pipelines across benchmarks. Methods that included global signal regression were the most consistently effective de-noising strategies
The Promise and Challenges of Intensive Longitudinal Designs for Imbalance Models of Adolescent Substance Use
Imbalance models of adolescent brain development attribute the increasing engagement in substance use during adolescence to within-person changes in the functional balance between the neural systems underlying socio-emotional, incentive processing, and cognitive control. However, the experimental designs and analytic techniques used to date do not lend themselves to explicit tests of how within-person change and within-person variability in socio-emotional processing and cognitive control place individual adolescents at risk for substance use. For a more complete articulation and a more stringent test of these models, we highlight the promise and challenges of using intensive longitudinal designs and analysis techniques that encompass many (often >10) within-person measurement occasions. Use of intensive longitudinal designs will lend researchers the tools required to make within-person inferences in individual adolescents that will ultimately align imbalance models of adolescent substance use with the methodological frameworks used to test them
The daily association between affect and alcohol use: a meta-analysis of individual participant data
Influential psychological theories hypothesize that people consume alcohol in response to the experience of both negative and positive emotions. Despite two decades of daily diary and ecological momentary assessment research, it remains unclear whether people consume more alcohol on days they experience higher negative and positive affect in everyday life. In this preregistered meta-analysis, we synthesized the evidence for these daily associations between affect and alcohol use. We included individual participant data from 69 studies (N = 12,394), which used daily and momentary surveys to assess affect and the number of alcoholic drinks consumed. Results indicate that people are not more likely to drink on days they experience high negative affect, but are more likely to drink and drink heavily on days high in positive affect. People self-reporting a motivational tendency to drink-to-cope and drink-to-enhance consumed more alcohol, but not on days they experienced higher negative and positive affect. Results were robust across different operationalizations of affect, study designs, study populations, and individual characteristics. These findings challenge the long-held belief that people drink more alcohol following increases in negative affect. Integrating these findings under different theoretical models and limitations of this field of research, we collectively propose an agenda for future research to explore open questions surrounding affect and alcohol use.The present study was funded by the Canadian Institutes of Health Research Grant MOP-115104 (Roisin M. O’Connor), Canadian Institutes of Health Research Grant MSH-122803 (Roisin M. O’Connor), John A. Hartford Foundation Grant (Paul Sacco), Loyola University Chicago Research Support Grant (Tracy De Hart), National Institute for Occupational Safety and Health Grant T03OH008435 (Cynthia Mohr), National Institutes of Health (NIH) Grant F31AA023447 (Ryan W. Carpenter), NIH Grant R01AA025936 (Kasey G. Creswell), NIH Grant R01AA025969 (Catharine E. Fairbairn), NIH Grant R21AA024156 (Anne M. Fairlie), NIH Grant F31AA024372 (Fallon Goodman), NIH Grant R01DA047247 (Kevin M. King), NIH Grant K01AA026854 (Ashley N. Linden-Carmichael), NIH Grant K01AA022938 (Jennifer E. Merrill), NIH Grant K23AA024808
(Hayley Treloar Padovano), NIH Grant P60AA11998 (Timothy Trull), NIH Grant MH69472 (Timothy Trull), NIH Grant K01DA035153 (Nisha Gottfredson), NIH Grant P50DA039838 (Ashley N. Linden-Carmichael),
NIH Grant K01DA047417 (David M. Lydon-Staley), NIH Grant T32DA037183 (M. Kushner), NIH Grant R21DA038163 (A. Moore), NIH Grant K12DA000167 (M. Potenza, Stephanie S. O’Malley), NIH Grant R01AA025451 (Bruce Bartholow, Thomas M. Piasecki), NIH Grant P50AA03510 (V. Hesselbrock), NIH Grant K01AA13938 (Kristina M. Jackson), NIH Grant K02AA028832 (Kevin M. King), NIH Grant T32AA007455 (M. Larimer), NIH Grant R01AA025037 (Christine M. Lee, M. Patrick), NIH Grant R01AA025611 (Melissa Lewis), NIH Grant R01AA007850 (Robert Miranda), NIH Grant R21AA017273 (Robert Miranda), NIH Grant R03AA014598 (Cynthia Mohr), NIH Grant R29AA09917 (Cynthia Mohr), NIH Grant T32AA07290 (Cynthia Mohr), NIH Grant P01AA019072 (P. Monti), NIH Grant R01AA015553 (J. Morgenstern), NIH Grant R01AA020077 (J. Morgenstern), NIH Grant R21AA017135 (J. Morgenstern), NIH Grant R01AA016621 (Stephanie S. O’Malley), NIH Grant K99AA029459 (Marilyn Piccirillo), NIH Grant F31AA022227 (Nichole Scaglione), NIH Grant R21AA018336 (Katie Witkiewitz), Portuguese State Budget Foundation for Science and Technology Grant UIDB/PSI/01662/2020 (Teresa Freire), University of Washington Population Health COVID-19 Rapid Response Grant (J. Kanter, Adam M. Kuczynski), U.S. Department of Defense Grant W81XWH-13-2-0020 (Cynthia Mohr), SANPSY Laboratory Core Support Grant CNRS USR 3413 (Marc Auriacombe), Social Sciences and Humanities Research Council of Canada Grant (N. Galambos), and Social Sciences and Humanities Research Council of Canada Grant (Andrea L. Howard)
An analysis-ready and quality controlled resource for pediatric brain white-matter research
We created a set of resources to enable research based on openly-available diffusion MRI (dMRI) data from the Healthy Brain Network (HBN) study. First, we curated the HBN dMRI data (N = 2747) into the Brain Imaging Data Structure and preprocessed it according to best-practices, including denoising and correcting for motion effects, susceptibility-related distortions, and eddy currents. Preprocessed, analysis-ready data was made openly available. Data quality plays a key role in the analysis of dMRI. To optimize QC and scale it to this large dataset, we trained a neural network through the combination of a small data subset scored by experts and a larger set scored by community scientists. The network performs QC highly concordant with that of experts on a held out set (ROC-AUC = 0.947). A further analysis of the neural network demonstrates that it relies on image features with relevance to QC. Altogether, this work both delivers resources to advance transdiagnostic research in brain connectivity and pediatric mental health, and establishes a novel paradigm for automated QC of large datasets
Recommended from our members
An analysis-ready and quality controlled resource for pediatric brain white-matter research
We created a set of resources to enable research based on openly-available diffusion MRI (dMRI) data from the Healthy Brain Network (HBN) study. First, we curated the HBN dMRI data (N = 2747) into the Brain Imaging Data Structure and preprocessed it according to best-practices, including denoising and correcting for motion effects, susceptibility-related distortions, and eddy currents. Preprocessed, analysis-ready data was made openly available. Data quality plays a key role in the analysis of dMRI. To optimize QC and scale it to this large dataset, we trained a neural network through the combination of a small data subset scored by experts and a larger set scored by community scientists. The network performs QC highly concordant with that of experts on a held out set (ROC-AUC = 0.947). A further analysis of the neural network demonstrates that it relies on image features with relevance to QC. Altogether, this work both delivers resources to advance transdiagnostic research in brain connectivity and pediatric mental health, and establishes a novel paradigm for automated QC of large datasets.
BárbaraAvelar-Pereira 9
, EthanRoy2
, Valerie J.Sydnor3,4,5,
JasonD.Yeatman1,2, The Fibr Community Science Consortium*, TheodoreD.Satterthwaite3,4,5,88
& Ariel Roke
- …