215 research outputs found
Lazed and Diffused: Untangling Noble Gas Thermochronometry Data for Exhumation Rates
Thermochronometric data can record the thermal history of rocks as they cool from high temperatures at depth to lower temperatures at the surface. This provides a unique perspective on the tectonic processes that form topography and the erosional processes that destroy it. However, quantitatively interpreting such data is a challenge because multiple models can do an equally good job at reproducing the data. In this article, we describe how inverse modeling can be used to improve quantitative interpretations of noble gas thermochronometric data on a variety of scales, ranging from mountain belts to individual mineral grains
Neon diffusion kinetics and implications for cosmogenic neon paleothermometry in feldspars
Observations of cosmogenic neon concentrations in feldspars can potentially be used to constrain the surface exposure duration or surface temperature history of geologic samples. The applicability of cosmogenic neon to either application depends on the temperature-dependent diffusivity of neon isotopes. In this work, we investigate the kinetics of neon diffusion in feldspars of different compositions and geologic origins through stepwise degassing experiments on single, proton-irradiated crystals. To understand the potential causes of complex diffusion behavior that is sometimes manifest as nonlinearity in Arrhenius plots, we compare our results to argon stepwise degassing experiments previously conducted on the same feldspars. Many of the feldspars we studied exhibit linear Arrhenius behavior for neon whereas argon degassing from the same feldspars did not. This suggests that nonlinear behavior in argon experiments is an artifact of structural changes during laboratory heating. However, other feldspars that we examined exhibit nonlinear Arrhenius behavior for neon diffusion at temperatures far below any known structural changes, which suggests that some preexisting material property is responsible for the complex behavior. In general, neon diffusion kinetics vary widely across the different feldspars studied, with estimated activation energies (Ea) ranging from 83.3 to 110.7 kJ/mol and apparent pre-exponential factors (D0) spanning three orders of magnitude from 2.4 × 10−3 to 8.9 × 10−1 cm2 s−1. As a consequence of this variability, the ability to reconstruct temperatures or exposure durations from cosmogenic neon abundances will depend on both the specific feldspar and the surface temperature conditions at the geologic site of interest
Martian Surface Paleotemperatures from Thermochronology of Meteorites
The temporal evolution of past martian surface temperatures is poorly known. We used thermochronology and published noble gas and petrographic data to constrain the temperature histories of the nakhlites and martian meteorite ALH84001. We found that the nakhlites have not been heated to more than 350°C since they formed. Our calculations also suggest that for most of the past 4 billion years, ambient near-surface temperatures on Mars are unlikely to have been much higher than the present cold (<0°C) state
Incorporating 3-D parent nuclide zonation for apatite ^4He/^3He thermochronometry: An example from the Appalachian Mountains
The ability to constrain km-scale exhumation with apatite ^4He/^3He thermochronometry is well established and the technique has been applied to a range of tectonic and geomorphic problems. However, multiple sources of uncertainty in specific crystal characteristics limit the applicability of the method, especially when geologic problems require identifying small perturbations in a cooling path. Here we present new ^4He/^3He thermochronometric data from the Appalachian Mountains, which indicate significant parent nuclide zonation in an apatite crystal. Using LA-ICPMS measurements of U and Th in the same crystal, we design a 3-D model of the crystal to explore the effects of intra-crystal variability in radiation damage accumulation. We describe a numerical approach to solve the 3-D production-diffusion equation. Using our numerical model and a previously determined time temperature path for this part of the Appalachians, we find excellent agreement between predicted and observed ^4He/^3He spectra. Our results confirm this time-temperature path and highlight that for complex U and Th zonation patterns, 3-D numerical models are required to infer an accurate time-temperature history. In addition, our results provide independent and novel evidence for a radiation damage control on diffusivity. The ability to exploit intra-crystal differences in 4He diffusivity (i.e., temperature sensitivity) greatly increases the potential to infer complex thermal histories
Further evidence for early lunar magnetism from troctolite 76535
The earliest history of the lunar dynamo is largely unknown and has important implications for the thermal state of the Moon and the physics of dynamo generation. The lunar sample with the oldest known paleomagnetic record is the 4.25 billion year old (Ga) troctolite 76535. Previous studies of unoriented subsamples of 76535 found evidence for a dynamo field with a paleointensity of several tens of microteslas. However, the lack of mutual subsample orientation prevented a demonstration that the magnetization was unidirectional, a key property of thermoremanent magnetization. Here we report further alternating field demagnetization on three mutually oriented subsamples of 76535, as well as new pressure remanent magnetization experiments to help rule out shock magnetization. We also describe new 40Ar/39Ar thermochronometry and cosmogenic neon measurements that better constrain the rock's thermal history. Although the rock is unbrecciated, unshocked, and slowly cooled, its demagnetization behavior is not ideal due to spurious remanence acquisition. Despite this limitation, all three subsamples record a high coercivity magnetization oriented in nearly the same direction, implying that they were magnetized by a unidirectional field on the Moon. We find no evidence for shock remanence, and our thermochronometry calculations show no significant reheating events since 4249 ± 12 million years ago (Ma). We infer a field paleointensity of approximately 20–40 μT, supporting the previous conclusion that a lunar dynamo existed at 4.25 Ga. The timing of this field supports an early dynamo powered by thermal or thermochemical core convection and/or a mechanical dynamo but marginally excludes a dynamo delayed by thermal blanketing from radiogenic element-rich magma ocean cumulates
Simulations and Experiments Reveal Effect of Nanopores on Helium Diffusion in Quartz
The diffusion properties of noble gases in minerals are widely used to reconstruct the thermal histories of rocks. Here, we combine density functional theory (DFT) calculations with laboratory experiments to investigate controls on helium diffusion in quartz. DFT calculations for perfect α-quartz predict substantially lower activation energies and frequency factors for helium diffusion than observed in laboratory experiments, especially in the [001] direction. These results imply that no helium could be retained in quartz at Earth surface temperatures, which conflicts with observations of partial cosmogenic 3He retention over geologic time scales. Here, we implement a model of helium diffusion in α-quartz modulated by nanopore defects that disrupt energetically favorable diffusion pathways. In this model, we find that laboratory-determined diffusivities can be most closely reproduced when a helium atom encounters ∼70 nanopore sites per million interstitial sites. The results of our model indicate that diffusion of helium in natural quartz, like other noble gases in other minerals, can be significantly modulated by extended defects
Rapid Glacial Erosion at 1.8 Ma Revealed by ^4He/^3He Thermochronometry
Alpine glaciation and river incision control the topography of mountain ranges, but their relative contributions have been debated for years. Apatite ^(4)He/^(3)He thermochronometry tightly constrains the timing and rate of glacial erosion within one of the largest valleys in the southern Coast Mountains of British Columbia, Canada. Five proximate samples require accelerated denudation of the Klinaklini Valley initiating 1.8 ± 0.2 million years ago (Ma). At least 2 kilometers of overlying rock were removed from the valley at ≥5 millimeters per year, indicating that glacial valley deepening proceeded ≥6 times as fast as erosion rates before ∼1.8 Ma. This intense erosion may be related to a global transition to enhanced climate instability ∼1.9 Ma
Trapped Ar isotopes in meteorite ALH 84001 indicate Mars did not have a thick ancient atmosphere
Water is not currently stable in liquid form on the martian surface due to the present mean atmospheric pressure of ∼7 mbar and mean global temperature of ∼220 K. However, geomorphic features and hydrated mineral assemblages suggest that Mars’ climate was once warmer and liquid water flowed on the surface. These observations may indicate a substantially more massive atmosphere in the past, but there have been few observational constraints on paleoatmospheric pressures. Here we show how the [superscript 40]Ar/[superscript 36]Ar ratios of trapped gases within martian meteorite ALH 84001 constrain paleoatmospheric pressure on Mars during the Noachian era [∼4.56–3.8 billion years (Ga)]. Our model indicates that atmospheric pressures did not exceed ∼1.5 bar during the first 400 million years (Ma) of the Noachian era, and were <400 mbar by 4.16 Ga. Such pressures of CO[subscript 2] are only sufficient to stabilize liquid water on Mars’ surface at low latitudes during seasonally warm periods. Other greenhouse gases like SO[superscript 2] and water vapor may have played an important role in intermittently stabilizing liquid water at higher latitudes following major volcanic eruptions or impact events.United States. National Aeronautics and Space Administration. Mars Fundamental Research Program (Grant MFRP05-0108)Ann and Gordon Getty Foundatio
Spatially Heterogeneous Post-Caledonian Burial and Exhumation Across the Scottish Highlands
The postassembly, postrift evolution of passive margins is an essential element of global continental tectonics. Thermal and exhumational histories of passive margins are commonly attributed to a number of drivers, including uplift and erosional retreat of a rift-flank escarpment, intraplate fault reactivation, mantle-driven uplift, and erosional disequilibrium, yet in many cases, a specific factor may appear to dominate the history of a given passive margin. Here, we investigate the complex evolution of passive margins by quantifying exhumation patterns in western Scotland. We build upon the well-studied thermal evolution of the Scottish North Atlantic passive margin to test the importance of spatially heterogeneous factors in driving postorogenic burial and exhumation. Independent investigations of the cooling history from seven different field sites across the western Scottish Highlands using radiogenic apatite helium thermochronometry ([U-Th]/He; n = 14; ca. 31–363 Ma) and thermal modeling confirm that post-Caledonian heating and burial, as well as cooling and exhumation, must have been variable across relatively short distances (i.e., tens of kilometers). Heating associated with Paleogene hotspot activity and rifting locally explains some of this spatial variation, but additional drivers, including margin tilting during rifting, vertical separation along reactivated faults, and nonuniform glacial erosion in the late Cenozoic, are also likely required to produce the observed heterogeneity. These results indicate that passive margins may experience variable burial, uplift, and erosion patterns and histories, without exhibiting a single, dominant driver for behavior before, during, and after rifting
- …