327 research outputs found

    Gaussian potentials facilitate access to quantum Hall states in rotating Bose gases

    Full text link
    Through exact numerical diagonalization for small numbers of atoms, we show that it is possible to access quantum Hall states in harmonically confined Bose gases at rotation frequencies well below the centrifugal limit by applying a repulsive Gaussian potential at the trap center. The main idea is to reduce or eliminate the effective trapping frequency in regions where the particle density is appreciable. The critical rotation frequency required to obtain the bosonic Laughlin state can be fixed at an experimentally accessible value by choosing an applied Gaussian whose amplitude increases linearly with the number of atoms while its width increases as the square root.Comment: 4 pages, 4 figure

    Topological Entropy of Quantum Hall States in Rotating Bose Gases

    Full text link
    Through exact numerical diagonalization, the von Neumann entropy is calculated for the Laughlin and Pfaffian quantum Hall states in rotating interacting Bose gases at zero temperature in the lowest Landau level limit. The particles comprising the states are indistinguishable, so the required spatial bipartitioning is effected by tracing over a subset of single-particle orbitals. The topological entropy is then extracted through a finite-size scaling analysis. The results for the Laughlin and the Pfaffian states agree with the expected values of ln⁑2\ln\sqrt{2} and ln⁑4\ln\sqrt{4}, respectively.Comment: 4 pages, 4 figure
    • …
    corecore