6,732 research outputs found
Towards a lightweight generic computational grid framework for biological research
Background: An increasing number of scientific research projects require access to large-scale computational resources. This is particularly true in the biological field, whether to facilitate the analysis of large high-throughput data sets, or to perform large numbers of complex simulations – a characteristic of the emerging field of systems biology. Results: In this paper we present a lightweight generic framework for combining disparate computational resources at multiple sites (ranging from local computers and clusters to established national Grid services). A detailed guide describing how to set up the framework is available from the following URL: http://igrid-ext.cryst.bbk.ac.uk/portal_guide/. Conclusion: This approach is particularly (but not exclusively) appropriate for large-scale biology projects with multiple collaborators working at different national or international sites. The framework is relatively easy to set up, hides the complexity of Grid middleware from the user, and provides access to resources through a single, uniform interface. It has been developed as part of the European ImmunoGrid project
High-order Radio Frequency Differentiation via Photonic Signal Processing with an Integrated Micro-resonator Kerr Optical Frequency Comb Source
We demonstrate the use of integrated micro-resonator based optical frequency
comb sources as the basis for transversal filtering functions for microwave and
radio frequency photonic filtering and advanced functions.Comment: 8 pages, 7 figures, 46 References. arXiv admin note: substantial text
overlap with arXiv:1512.01741, arXiv:1512.0630
Harnessing optical micro-combs for microwave photonics
In the past decade, optical frequency combs generated by high-Q
micro-resonators, or micro-combs, which feature compact device footprints, high
energy efficiency, and high-repetition-rates in broad optical bandwidths, have
led to a revolution in a wide range of fields including metrology, mode-locked
lasers, telecommunications, RF photonics, spectroscopy, sensing, and quantum
optics. Among these, an application that has attracted great interest is the
use of micro-combs for RF photonics, where they offer enhanced functionalities
as well as reduced size and power consumption over other approaches. This
article reviews the recent advances in this emerging field. We provide an
overview of the main achievements that have been obtained to date, and
highlight the strong potential of micro-combs for RF photonics applications. We
also discuss some of the open challenges and limitations that need to be met
for practical applications.Comment: 32 Pages, 13 Figures, 172 Reference
Pulsed Quantum Frequency Combs from an Actively Mode-locked Intra-cavity Generation Scheme
We introduce an intra-cavity actively mode-locked excitation scheme for nonlinear microring resonators that removes the need for external laser excitation in the generation of pulsed two-photon frequency combs. We found a heralded anti-bunching dip of 0.245 and maximum coincidence-to-accidental ratio of 110 for the generated photon pairs
The Stargazin-Related Protein {gamma}7 Interacts with the mRNA-Binding Protein Heterogeneous Nuclear Ribonucleoprotein A2 and Regulates the Stability of Specific mRNAs, Including CaV2.2
The role(s) of the novel stargazin-like {gamma}-subunit proteins remain controversial. We have shown previously that the neuron-specific {gamma}7 suppresses the expression of certain calcium channels, particularly CaV2.2, and is therefore unlikely to operate as a calcium channel subunit. We now show that the effect of {gamma}7 on CaV2.2 expression is via an increase in the degradation rate of CaV2.2 mRNA and hence a reduction of CaV2.2 protein level. Furthermore, exogenous expression of {gamma}7 in PC12 cells also decreased the endogenous CaV2.2 mRNA level. Conversely, knockdown of endogenous {gamma}7 with short-hairpin RNAs produced a reciprocal enhancement of CaV2.2 mRNA stability and an increase in endogenous calcium currents in PC12 cells. Moreover, both endogenous and expressed {gamma}7 are present on intracellular membranes, rather than the plasma membrane. The cytoplasmic C terminus of {gamma}7 is essential for all its effects, and we show that {gamma}7 binds directly via its C terminus to a heterogeneous nuclear ribonucleoprotein (hnRNP A2), which also binds to a motif in CaV2.2 mRNA, and is associated with native CaV2.2 mRNA in PC12 cells. The expression of hnRNP A2 enhances CaV2.2 IBa, and this enhancement is prevented by a concentration of {gamma}7 that alone has no effect on IBa. The effect of {gamma}7 is selective for certain mRNAs because it had no effect on {alpha}2{delta}-2 mRNA stability, but it decreased the mRNA stability for the potassium-chloride cotransporter, KCC1, which contains a similar hnRNP A2 binding motif to that in CaV2.2 mRNA. Our results indicate that {gamma}7 plays a role in stabilizing CaV2.2 mRNA
- …
