15,060 research outputs found
Common Codebook Millimeter Wave Beam Design: Designing Beams for Both Sounding and Communication with Uniform Planar Arrays
Fifth generation (5G) wireless networks are expected to utilize wide
bandwidths available at millimeter wave (mmWave) frequencies for enhancing
system throughput. However, the unfavorable channel conditions of mmWave links,
e.g., higher path loss and attenuation due to atmospheric gases or water vapor,
hinder reliable communications. To compensate for these severe losses, it is
essential to have a multitude of antennas to generate sharp and strong beams
for directional transmission. In this paper, we consider mmWave systems using
uniform planar array (UPA) antennas, which effectively place more antennas on a
two-dimensional grid. A hybrid beamforming setup is also considered to generate
beams by combining a multitude of antennas using only a few radio frequency
chains. We focus on designing a set of transmit beamformers generating beams
adapted to the directional characteristics of mmWave links assuming a UPA and
hybrid beamforming. We first define ideal beam patterns for UPA structures.
Each beamformer is constructed to minimize the mean squared error from the
corresponding ideal beam pattern. Simulation results verify that the proposed
codebooks enhance beamforming reliability and data rate in mmWave systems.Comment: 14 pages, 10 figure
Advanced Quantizer Designs for FDD-Based FD-MIMO Systems Using Uniform Planar Arrays
Massive multiple-input multiple-output (MIMO) systems, which utilize a large
number of antennas at the base station, are expected to enhance network
throughput by enabling improved multiuser MIMO techniques. To deploy many
antennas in reasonable form factors, base stations are expected to employ
antenna arrays in both horizontal and vertical dimensions, which is known as
full-dimension (FD) MIMO. The most popular two-dimensional array is the uniform
planar array (UPA), where antennas are placed in a grid pattern. To exploit the
full benefit of massive MIMO in frequency division duplexing (FDD), the
downlink channel state information (CSI) should be estimated, quantized, and
fed back from the receiver to the transmitter. However, it is difficult to
accurately quantize the channel in a computationally efficient manner due to
the high dimensionality of the massive MIMO channel. In this paper, we develop
both narrowband and wideband CSI quantizers for FD-MIMO taking the properties
of realistic channels and the UPA into consideration. To improve quantization
quality, we focus on not only quantizing dominant radio paths in the channel,
but also combining the quantized beams. We also develop a hierarchical beam
search approach, which scans both vertical and horizontal domains jointly with
moderate computational complexity. Numerical simulations verify that the
performance of the proposed quantizers is better than that of previous CSI
quantization techniques.Comment: 15 pages, 6 figure
Off-resonance magnetisation transfer contrast (MTC) MRI using fast field-cycling (FFC)
Peer reviewedPostprin
Why Does the Law of One Price Fail? An Experiment on Index Mutual Funds
Experimental subjects allocate $10,000 across four S&P 500 index funds. Subject rewards depend on the chosen portfolio’s subsequent return. Because the investments are not actually intermediated by the fund companies, portfolio returns are unbundled from non-portfolio services. The optimal portfolio therefore invests 100% in the lowest-cost fund. Nonetheless, subjects overwhelmingly fail to minimize fees. When we make fees transparent and salient, portfolios shift towards cheaper funds, but fees are still not minimized. Instead, subjects place high weight on normatively irrelevant historical returns. Subjects who choose high-cost index funds are relatively much less confident about their asset allocation choices.
- …