24 research outputs found
Lithium isotopes in water and regolith in a deep weathering profile reveal imbalances in Critical Zone fluxes
To trace Critical Zone processes and to quantify Li fluxes from one Critical Zone compartment into another, we investigated the Li concentration and isotopic composition (δ7Li) of time-series water samples (including subsurface flow, groundwater and creek water), vegetation, bedrock (including separated minerals from bedrock), and regolith (including exchangeable fraction and clay-sized fraction of regolith) in a temperate forested headwater catchment in the Black Forest, Conventwald, Germany. Our estimation of the Li budget shows that atmospheric deposition and biological processes played minor roles in the Li cycle relative to chemical weathering. All water samples (δ 7Li value of 6.5 to 20.4 ‰) were enriched in 7Li compared to bedrock (-1.3 ‰) and regolith (∼-1.7 ‰), but δ7Li differed between water pathways: δ7Li variations in subsurface flow, creek water and groundwater were controlled by conservative mixing, exchangeable pool buffering and Li incorporation/adsorption, respectively. Fractionated heavy Li isotopes in water samples resulted from the formation of secondary solids which preferentially incorporated 6Li, with the separated clay-sized fraction of the regolith exhibiting more negative δ7Li values (-5.4 to −3.5 ‰) than the bulk regolith (∼-1.7 ‰). However, Li in secondary solids only accounted for 8 ± 6 % of the total Li hosted in bulk regolith, and consequently δ7Li in soil did not differ significantly from δ 7Li in bedrock. This is unexpected considering water is continuously removing 7Li in preference over 6Li from regolith. Mass balance calculations applied at the catchment scale point to an irreconcilable imbalance with our data. On one hand, the regolith’s δ7Li values are not negative enough to balance the 7Li export by river water, and on the other hand Li in the riverine dissolved load only accounts for ∼ 30 % of the Li solubilized from regolith. Therefore, we suggest that there might be a “hidden export pathway” for Li at our site, possibly subsurface removal of fine particles enriched in 6Li. In light of increasingly frequent observations of such isotopic imbalances in the Critical Zone this phenomenon deserves increased attention
Revisiting carbonate chemistry controls on planktic foraminifera Mg / Ca:implications for sea surface temperature and hydrology shifts over the Paleocene-Eocene Thermal Maximum and Eocene-Oligocene transition
Much of our knowledge of past ocean temperatures comes from the foraminifera Mg / Ca palaeothermometer. Several nonthermal controls on foraminifera Mg incorporation have been identified, of which vital effects, salinity, and secular variation in seawater Mg / Ca are the most commonly considered. Ocean carbonate chemistry is also known to influence Mg / Ca, yet this is rarely examined as a source of uncertainty, either because (1) precise pH and [CO32−] reconstructions are sparse or (2) it is not clear from existing culture studies how a correction should be applied. We present new culture data of the relationship between carbonate chemistry and Mg / Ca for the surface-dwelling planktic species Globigerinoides ruber and compare our results to data compiled from existing studies. We find a coherent relationship between Mg / Ca and the carbonate system and argue that pH rather than [CO32−] is likely to be the dominant control. Applying these new calibrations to data sets for the Paleocene–Eocene Thermal Maximum (PETM) and Eocene–Oligocene transition (EOT) enables us to produce a more accurate picture of surface hydrology change for the former and a reassessment of the amount of subtropical precursor cooling for the latter. We show that pH-adjusted Mg / Ca and δ18O data sets for the PETM are within error of no salinity change and that the amount of precursor cooling over the EOT has been previously underestimated by ∼ 2 °C based on Mg / Ca. Finally, we present new laser-ablation data of EOT-age Turborotalia ampliapertura from St. Stephens Quarry (Alabama), for which a solution inductively coupled plasma mass spectrometry (ICPMS) Mg / Ca record is available (Wade et al., 2012). We show that the two data sets are in excellent agreement, demonstrating that fossil solution and laser-ablation data may be directly comparable. Together with an advancing understanding of the effect of Mg / Casw, the coherent picture of the relationship between Mg / Ca and pH that we outline here represents a step towards producing accurate and quantitative palaeotemperatures using this proxy
The PhanSST global database of Phanerozoic sea surface temperature proxy data
Paleotemperature proxy data form the cornerstone of paleoclimate research and are integral to understanding the evolution of the Earth system across the Phanerozoic Eon. Here, we present PhanSST, a database containing over 150,000 data points from five proxy systems that can be used to estimate past sea surface temperature. The geochemical data have a near-global spatial distribution and temporally span most of the Phanerozoic. Each proxy value is associated with consistent and queryable metadata fields, including information about the location, age, and taxonomy of the organism from which the data derive. To promote transparency and reproducibility, we include all available published data, regardless of interpreted preservation state or vital effects. However, we also provide expert-assigned diagenetic assessments, ecological and environmental flags, and other proxy-specific fields, which facilitate informed and responsible reuse of the database. The data are quality control checked and the foraminiferal taxonomy has been updated. PhanSST will serve as a valuable resource to the paleoclimate community and has myriad applications, including evolutionary, geochemical, diagenetic, and proxy calibration studies
The Capital Structure and Governance of a Mortgage Securitization Utility
We explore the capital structure and governance of a mortgage-insuring securitization utility operating with government reinsurance for systemic or 'tail' risk. The structure we propose for the replacement of the GSEs focuses on aligning incentives for appropriate pricing and transfer of mortgage risks across the private sector and between the private sector and the government. We present the justification and mechanics of a vintage-based capital structure, and assess the components of the mortgage guarantee fee, whose size we find is most sensitive to the required capital ratio and the expected return on that capital. We discuss the implications of selling off some of the utility's mortgage credit risk to the capital markets and how the informational value of such transactions may vary with the level of risk transfer. Finally, we explore how mutualization could address incentive misalignments arising out of securitization and government insurance, as well as how the governance structure for such a financial market utility could be designed
The PhanSST global database of Phanerozoic sea surface temperature proxy data
Paleotemperature proxy data form the cornerstone of paleoclimate research and are integral to understanding the evolution of the Earth system across the Phanerozoic Eon. Here, we present PhanSST, a database containing over 150,000 data points from five proxy systems that can be used to estimate past sea surface temperature. The geochemical data have a near-global spatial distribution and temporally span most of the Phanerozoic. Each proxy value is associated with consistent and queryable metadata fields, including information about the location, age, and taxonomy of the organism from which the data derive. To promote transparency and reproducibility, we include all available published data, regardless of interpreted preservation state or vital effects. However, we also provide expert-assigned diagenetic assessments, ecological and environmental flags, and other proxy-specific fields, which facilitate informed and responsible reuse of the database. The data are quality control checked and the foraminiferal taxonomy has been updated. PhanSST will serve as a valuable resource to the paleoclimate community and has myriad applications, including evolutionary, geochemical, diagenetic, and proxy calibration studies
Lithium isotopes in water and regolith in a deep weathering profile reveal imbalances in Critical Zone fluxes
To trace Critical Zone processes and to quantify Li fluxes from one Critical Zone compartment into another, we investigated the Li concentration and isotopic composition (δ7Li) of time-series water samples (including subsurface flow, groundwater and creek water), vegetation, bedrock (including separated minerals from bedrock), and regolith (including exchangeable fraction and clay-sized fraction of regolith) in a temperate forested headwater catchment in the Black Forest, Conventwald, Germany. Our estimation of the Li budget shows that atmospheric deposition and biological processes played minor roles in the Li cycle relative to chemical weathering. All water samples (δ 7Li value of 6.5 to 20.4 ‰) were enriched in 7Li compared to bedrock (-1.3 ‰) and regolith (∼-1.7 ‰), but δ7Li differed between water pathways: δ7Li variations in subsurface flow, creek water and groundwater were controlled by conservative mixing, exchangeable pool buffering and Li incorporation/adsorption, respectively. Fractionated heavy Li isotopes in water samples resulted from the formation of secondary solids which preferentially incorporated 6Li, with the separated clay-sized fraction of the regolith exhibiting more negative δ7Li values (-5.4 to −3.5 ‰) than the bulk regolith (∼-1.7 ‰). However, Li in secondary solids only accounted for 8 ± 6 % of the total Li hosted in bulk regolith, and consequently δ7Li in soil did not differ significantly from δ 7Li in bedrock. This is unexpected considering water is continuously removing 7Li in preference over 6Li from regolith. Mass balance calculations applied at the catchment scale point to an irreconcilable imbalance with our data. On one hand, the regolith’s δ7Li values are not negative enough to balance the 7Li export by river water, and on the other hand Li in the riverine dissolved load only accounts for ∼ 30 % of the Li solubilized from regolith. Therefore, we suggest that there might be a “hidden export pathway” for Li at our site, possibly subsurface removal of fine particles enriched in 6Li. In light of increasingly frequent observations of such isotopic imbalances in the Critical Zone this phenomenon deserves increased attention
Mg isotope composition of runoff is buffered by the regolith exchangeable pool
In a small, forested catchment underlain by gneiss (Conventwald, Black Forest, Germany), we found that the magnesiumisotope composition (d26Mg) of creek water did not show seasonal variability, despite variations in dissolved Mg concentrations. To investigate the potential controlling factors on water d26Mg values, we studied the Mg isotope composition of solid samples (bedrock, bulk soil, clay-sized fraction of soil, separated minerals, the exchangeable fraction of regolith) and water samples comprising time series of creek water, groundwater and subsurface flow. Subsurface flow from 0–15 cm depth (?0.80 ± 0.08‰) and 15–150 cm depth (?0.66 ± 0.17‰), groundwater (?0.55 ± 0.03‰), and creek water (?0.54 ± 0.04‰) are all depleted in heavy Mg isotopes compared to bedrock (?0.21 ± 0.05‰). Subsurface flow samples have similar d26Mg values to the regolith exchangeable fraction at the respective sampling depths. Also, groundwater and creek water show d26Mg values that are identical to those of the exchangeable fraction in the deep regolith. We suggest, therefore, that cation-exchange processes in the regolith control Mg concentrations and d26Mg values of creek water at our study site. This assumption was further verified by batch adsorption-desorption experiments using soil samples from this study, which showed negligible Mg isotope fractionation during adsorption-desorption. We propose that the exchangeable fraction of the regolith buffers dissolved Mg concentrations by adsorbing and storing Mg when soil solutions are high in concentration in the dry season and desorbing Mg when rainfall infiltrates and percolates through the regolith in the wet season. This mechanism may explain the near chemostatic behavior of Mg concentrations and the invariance of d26Mg values in creek water. In addition, the depth distribution of exchangeable Mg concentration and isotope composition in the regolith reflects mineral dissolution and secondary mineral formation in deep regolith (>3 m) and biological cycling in shallower depth (0–3 m). Magnesium stable isotopes thus provide an accurate snapshot of the geogenic (weathering) and the organic (bio-cycled) nutrient cycle