92 research outputs found

    Networks with fourfold connectivity in two dimensions

    Get PDF
    The elastic properties of planar, C4-symmetric networks under stress and at nonzero temperature are determined by simulation and mean field approximations. Attached at fourfold coordinated junction vertices, the networks are self-avoiding in that their elements (or bonds) may not intersect each other. Two different models are considered for the potential energy of the elements: either Hooke’s law springs or flexible tethers (square well potential). For certain ranges of stress and temperature, the properties of the networks are captured by one of several models: at large tensions, the networks behave like a uniform system of square plaquettes, while at large compressions or high temperatures, they display many characteristics of an ideal gas. Under less severe conditions, mean field models with more general shapes (parallelograms) reproduce many essential features of both networks. Lastly, the spring network expands without limit at a two-dimensional tension equal to the force constant of the spring; however, it does not appear to collapse under compression, except at zero temperature

    Dual network model for red blood cell membranes

    Get PDF
    A two-component network is studied by Monte Carlo simulation to model the lipid/spectrin membrane of red blood cells. The model predicts that the shear modulus decreases rapidly with the maximum length of the model spectrin and should be in the 10-7 J/m2 range for human red blood cells. A simplified model for the isolated spectrin network shows a negative LamĂŠ coefficient λ. Transverse fluctuations of the dual membrane are found to be fluidlike over the range of wavelengths investigated

    An Improved Quantum Molecular Dynamics Model and its Applications to Fusion Reaction near Barrier

    Get PDF
    An improved Quantum Molecular Dynamics model is proposed. By using this model, the properties of ground state of nuclei from 6^{6}Li to 208^{208}Pb can be described very well with one set of parameters. The fusion reactions for 40^{40}Ca+90^{90}Zr, 40^{40}Ca+96^{96}Zr and 48^{48}Ca+90^{90}Zr at energy near barrier are studied by this model. The experimental data of the fusion cross sections for 40^{40}Ca+90,96^{90,96}Zr at the energy near barrier can be reproduced remarkably well without introducing any new parameters. The mechanism for the enhancement of fusion probability for fusion reactions with neutron-rich projectile or target is analyzed.Comment: 20 pages, 12 figures, 3 table

    Negative poisson ratio in two-dimensional networks under tension

    Get PDF
    The elastic properties of two-dimensional networks under tension are studied by the mean-field approximation and Monte Carlo simulation. The networks are characterized by fixed (polymerized) connectivity and either a square-well or a Hooke’s-law interaction among their components. Both self-avoiding and phantom networks are examined. The elastic properties of Hooke’s-law networks at large equilibrium length are found to be well represented by a mean-field model. All the networks investigated show a negative Poisson ratio over a range of tension. At finite tension, the phantom networks exhibit a phase transition to a collapsed state

    Dynamic study on fusion reactions for 40,48^{40,48}Ca+90,96^{90,96}Zr around Coulomb barrier

    Full text link
    By using the updated improved Quantum Molecular Dynamics model in which a surface-symmetry potential term has been introduced for the first time, the excitation functions for fusion reactions of 40,48^{40,48}Ca+90,96^{90,96}Zr at energies around the Coulomb barrier have been studied. The experimental data of the fusion cross sections for 40^{40}Ca+90,96^{90,96}Zr have been reproduced remarkably well without introducing any new parameters. The fusion cross sections for the neutron-rich fusion reactions of 48^{48}Ca+90,96^{90,96}Zr around the Coulomb barrier are predicted to be enhanced compared with a non-neutron-rich fusion reaction. In order to clarify the mechanism of the enhancement of the fusion cross sections for neutron-rich nuclear fusions, we pay a great attention to study the dynamic lowering of the Coulomb barrier during a neck formation. The isospin effect on the barrier lowering is investigated. It is interesting that the effect of the projectile and target nuclear structure on fusion dynamics can be revealed to a certain extent in our approach. The time evolution of the N/Z ratio at the neck region has been firstly illustrated. A large enhancement of the N/Z ratio at neck region for neutron-rich nuclear fusion reactions is found.Comment: 21 pages, 7 figures,3 table

    Fluctuation spectrum of fluid membranes coupled to an elastic meshwork: jump of the effective surface tension at the mesh size

    Full text link
    We identify a class of composite membranes: fluid bilayers coupled to an elastic meshwork, that are such that the meshwork's energy is a function Fel[Aξ]F_\mathrm{el}[A_\xi] \textit{not} of the real microscopic membrane area AA, but of a \textit{smoothed} membrane's area AξA_\xi, which corresponds to the area of the membrane coarse-grained at the mesh size ξ\xi. We show that the meshwork modifies the membrane tension σ\sigma both below and above the scale ξ\xi, inducing a tension-jump Δσ=dFel/dAξ\Delta\sigma=dF_\mathrm{el}/dA_\xi. The predictions of our model account for the fluctuation spectrum of red blood cells membranes coupled to their cytoskeleton. Our results indicate that the cytoskeleton might be under extensional stress, which would provide a means to regulate available membrane area. We also predict an observable tension jump for membranes decorated with polymer "brushes"

    Optimized Discretization of Sources Imaged in Heavy-Ion Reactions

    Get PDF
    We develop the new method of optimized discretization for imaging the relative source from two particle correlation functions. In this method, the source resolution depends on the relative particle separation and is adjusted to available data and their errors. We test the method by restoring assumed pp sources and then apply the method to pp and IMF data. In reactions below 100 MeV/nucleon, significant portions of the sources extend to large distances (r > 20 fm). The results from the imaging show the inadequacy of common Gaussian source-parametrizations. We establish a simple relation between the height of the pp correlation function and the source value at short distances, and between the height and the proton freeze-out phase-space density.Comment: 36 pages (inc. 9 figures), RevTeX, uses epsf.sty. Submitted to Phys. Rev.

    Dynamics of filaments and membranes in a viscous fluid

    Full text link
    Motivated by the motion of biopolymers and membranes in solution, this article presents a formulation of the equations of motion for curves and surfaces in a viscous fluid. We focus on geometrical aspects and simple variational methods for calculating internal stresses and forces, and we derive the full nonlinear equations of motion. In the case of membranes, we pay particular attention to the formulation of the equations of hydrodynamics on a curved, deforming surface. The formalism is illustrated by two simple case studies: (1) the twirling instability of straight elastic rod rotating in a viscous fluid, and (2) the pearling and buckling instabilities of a tubular liposome or polymersome.Comment: 26 pages, 12 figures, to be published in Reviews of Modern Physic

    Two-Proton Correlations from 14.6A GeV/c Si+Pb and 11.5A GeV/c Au+Au Central Collisions

    Full text link
    Two-proton correlation functions have been measured in Si+Pb collisions at 14.6A GeV/c and Au+Au collisions at 11.5A GeV/c by the E814/E877 collaboration. Data are compared with predictions of the transport model RQMD and the source size is inferred from this comparison. Our analysis shows that, for both reactions, the characteristic size of the system at freeze-out exceeds the size of the projectile, suggesting that the fireball created in the collision has expanded. For Au+Au reactions, the observed centrality dependence of the two-proton correlation function implies that more central collisions lead to a larger source sizes.Comment: RevTex, 12 pages, 5 figure

    Mechanism of Assembly of the Dimanganese-Tyrosyl Radical Cofactor of Class Ib Ribonucleotide Reductase: Enzymatic Generation of Superoxide Is Required for Tyrosine Oxidation via a Mn(III)Mn(IV) Intermediate

    Get PDF
    Ribonucleotide reductases (RNRs) utilize radical chemistry to reduce nucleotides to deoxynucleotides in all organisms. In the class Ia and Ib RNRs, this reaction requires a stable tyrosyl radical (Y•) generated by oxidation of a reduced dinuclear metal cluster. The Fe[superscript III][subscript 2]-Y• cofactor in the NrdB subunit of the class Ia RNRs can be generated by self-assembly from Fe[superscript II][subscript 2]-NrdB, O[subscript 2], and a reducing equivalent. By contrast, the structurally homologous class Ib enzymes require a Mn[superscript III][subscript 2]-Y• cofactor in their NrdF subunit. Mn[superscript II][subscript 2]-NrdF does not react with O[subscript 2], but it binds the reduced form of a conserved flavodoxin-like protein, NrdI[subscript hq], which, in the presence of O[subscript 2], reacts to form the Mn[superscript III][subscript 2]-Y• cofactor. Here we investigate the mechanism of assembly of the Mn[superscript III][subscript 2]-Y• cofactor in Bacillus subtilis NrdF. Cluster assembly from Mn[superscript II][subscript 2]-NrdF, NrdI[subscript hq], and O[subscript 2] has been studied by stopped flow absorption and rapid freeze quench EPR spectroscopies. The results support a mechanism in which NrdI[subscript hq] reduces O[subscript 2] to O[subscript 2]•– (40–48 s[superscript –1], 0.6 mM O[subscript 2]), the O[subscript 2]•– channels to and reacts with Mn[superscript II][subscript 2]-NrdF to form a Mn[superscript III]Mn[superscript IV] intermediate (2.2 ± 0.4 s[superscript –1]), and the Mn[superscript III]Mn[superscript IV] species oxidizes tyrosine to Y• (0.08–0.15 s[superscript –1]). Controlled production of O[subscript 2]•– by NrdI[subscript hq] during class Ib RNR cofactor assembly both circumvents the unreactivity of the Mn[superscript II][subscript 2] cluster with O[subscript 2] and satisfies the requirement for an “extra” reducing equivalent in Y• generation.National Institutes of Health (U.S.) (Grant GM81393)United States. Dept. of Defense (National Defense Science and Engineering Graduate (NDSEG) Fellowships
    • …
    corecore