4 research outputs found

    Landslide characterization using P- and S-wave seismic refraction tomography — The importance of elastic moduli

    Get PDF
    © 2016 In the broad spectrum of natural hazards, landslides in particular are capable of changing the landscape and causing significant human and economic losses. Detailed site investigations form an important component in the landslide risk mitigation and disaster risk reduction process. These investigations usually rely on surface observations, discrete sampling of the subsurface, and laboratory testing to examine properties that are deemed representative of entire slopes. Often this requires extensive interpolations and results in large uncertainties. To compliment and extend these approaches, we present a study from an active landslide in a Lias Group clay slope, North Yorkshire, UK, examining combined P- and S-wave seismic refraction tomography (SRT) as a means of providing subsurface volumetric imaging of geotechnical proxies. The distributions of seismic wave velocities determined from SRT at the study site indicated zones with higher porosity and fissure density that are interpreted to represent the extent and depth of mass movements and weathered bedrock zones. Distinguishing the lithological units was facilitated by deriving the Poisson's ratio from the SRT data as saturated clay and partially saturated sandy silts showed distinctively different Poisson's ratios. Shear and Young's moduli derived from the SRT data revealed the weak nature of the materials in active parts of the landslide (i.e. 25 kPa and 100 kPa respectively). The SRT results are consistent with intrusive (i.e. cone penetration tests), laboratory, and additional geoelectrical data from this site. This study shows that SRT forms a cost-effective method that can significantly reduce uncertainties in the conceptual ground model of geotechnical and hydrological conditions that govern landslide dynamics

    Challenges in monitoring and managing engineered slopes in a changing climate

    Get PDF
    © 2016 The Authors. Geotechnical asset owners need to know which parts of their asset network are vulnerable to climate change induced failure in order to optimise future investment. Protecting these vulnerable slopes requires monitoring systems capable of identifying and alerting to asset operators changes in the internal conditions that precede failure. Current monitoring systems are heavily reliant on point sensors which can be difficult to interpret across slope scale. This paper presents challenges to producing such a system and research being carried out to address some of these using electrical resistance tomography (ERT). Experimental results show that whilst it is possible to measure soil water content indirectly via resistivity the relationship between resistivity and water content will change over time for a given slope. If geotechnical parameters such as pore water pressure are to be estimated using this method then ERT systems will require integrating with more conventional geotechnical instrumentation to ensure correct representative information is provided. The paper also presents examples of how such data can be processed and communicated to asset owners for the purposes of asset management

    Four-dimensional imaging of moisture dynamics during landslide reactivation

    Get PDF
    Landslides pose significant risks to communities and infrastructure, and mitigating these risks relies on understanding landslide causes and triggering processes. It has been shown that geophysical surveys can significantly contribute to the characterization of unstable slopes. However, hydrological processes can be temporally and spatially heterogeneous, requiring their related properties to be monitored over time. Geoelectrical monitoring can provide temporal and volumetric distributions of electrical resistivity, which are directly related to moisture content. To date, studies demonstrating this capability have been restricted to 2-D sections, which are insufficient to capture the full degree of spatial heterogeneity. This study is the first to employ 4-D (i.e., 3-D time lapse) resistivity imaging on an active landslide, providing long-term data (3 years) highlighting the evolution of moisture content prior to landslide reactivation and showing its decline post reactivation. Crucially, the time-lapse inversion methodology employed here incorporates movements of the electrodes on the unstable surface. Although seasonal characteristics dominate the shallow moisture dynamics during the first 2 years with surficial drying in summer and wetting in winter, in the months preceding reactivation, moisture content increased by more than 45% throughout the slope. This is in agreement with independent data showing a significant rise in piezometric heads and shallow soil moisture contents as a result of prolonged and intense rainfall. Based on these results, remediation measures could be designed and early-warning systems implemented. Thus, resistivity monitoring that can allow for moving electrodes provides a new means for the effective mitigation of landslide risk

    Assessment of ground-based monitoring techniques applied to landslide investigations

    Get PDF
    A landslide complex in the Whitby Mudstone Formation at Hollin Hill, North Yorkshire, UK is periodically re-activated in response to rainfall-induced pore-water pressure fluctuations. This paper compares long-term measurements (i.e., 2009 – 2014) obtained from a combination of monitoring techniques that have been employed together for the first time on an active landslide. The results highlight the relative performance of the different techniques, and can provide guidance for researchers and practitioners for selecting and installing appropriate monitoring techniques to assess unstable slopes. Particular attention is given to the spatial and temporal resolution offered by the different approaches that include: Real Time Kinematic-GPS (RTK-GPS) monitoring of a ground surface marker array, conventional inclinometers, Shape Acceleration Arrays (SAA), tilt meters, active waveguides with Acoustic Emission (AE) monitoring, and piezometers. High spatial resolution information has allowed locating areas of stability and instability across a large slope. This has enabled identification of areas where further monitoring efforts should be focused. High temporal resolution information allowed the capture of S’-shaped slope displacement-time behaviour (i.e. phases of slope acceleration, deceleration and stability) in response to elevations in pore-water pressures. This study shows that a well-balanced suite of monitoring techniques that provides high temporal and spatial resolution on both measurement and slope scale is necessary to fully understand failure and movement mechanisms of slopes. In the case of the Hollin Hill landslide it enabled detailed interpretation of the geomorphological processes governing landslide activity. It highlights the benefit of regularly surveying a network of GPS markers to determine areas for installation of movement monitoring techniques that offer higher resolution both temporally and spatially. The small sensitivity of tilt meter measurements to translational movements limited the ability to record characteristic ‘S’-shaped landslide movements at Hollin Hill, which were identified using SAA and AE measurements. This high sensitivity to landslide movements indicates the applicability of SAA and AE monitoring to be used in early warning systems, through detecting and quantifying accelerations of slope movement
    corecore