38 research outputs found

    Modal logic of planar polygons

    Get PDF
    We study the modal logic of the closure algebra P2P_2, generated by the set of all polygons in the Euclidean plane R2\mathbb{R}^2. We show that this logic is finitely axiomatizable, is complete with respect to the class of frames we call "crown" frames, is not first order definable, does not have the Craig interpolation property, and its validity problem is PSPACE-complete

    Bitopological Duality for Distributive Lattices and Heyting Algebras

    Get PDF
    We introduce pairwise Stone spaces as a natural bitopological generalization of Stone spaces—the duals of Boolean algebras—and show that they are exactly the bitopological duals of bounded distributive lattices. The category PStone of pairwise Stone spaces is isomorphic to the category Spec of spectral spaces and to the category Pries of Priestley spaces. In fact, the isomorphism of Spec and Pries is most naturally seen through PStone by first establishing that Pries is isomorphic to PStone, and then showing that PStone is isomorphic to Spec. We provide the bitopological and spectral descriptions of many algebraic concepts important for the study of distributive lattices. We also give new bitopological and spectral dualities for Heyting algebras, co-Heyting algebras, and bi-Heyting algebras, thus providing two new alternatives of Esakia’s duality

    The modal logic of Stone spaces: diamond as derivative

    Get PDF
    Abstract. We show that if we interpret modal diamond as the derived set operator of a topological space, then the modal logic of Stone spaces is K4 and the modal logic of weakly scattered Stone spaces is K4G. As a corollary, we obtain that K4 is also the modal logic of compact Hausdorff spaces and K4G is the modal logic of weakly scattered compact Hausdorff spaces. §1. Introduction. Topological semantics of modal logic was first developed by On the other hand, if we interpret 3 as the derived set operator, then the modal logic of all topological spaces is wK4-weak K4-which is obtained from the basic normal modal logic K by adding 33 p → ( p ∨ 3 p) as a new axiom In this paper we are interested in the modal logic of compact Hausdorff zero-dimensional spaces, also known as Stone spaces. The interest in Stone spaces stems from the celebrated Stone duality, which establishes duality (dual equivalence) between the category of Boolean algebras and Boolean algebra homomorphisms and the category of Stone spaces and continuous maps. Under Stone duality atomless Boolean algebras correspond to densein-itself Stone spaces, atomic Boolean algebras correspond to weakly scattered Stone spaces, and superatomic Boolean algebras correspond to scattered Stone spaces. It follows fro

    Geometric Model Checking of Continuous Space

    Get PDF
    Topological Spatial Model Checking is a recent paradigm where model checking techniques are developed for the topological interpretation of Modal Logic. The Spatial Logic of Closure Spaces, SLCS, extends Modal Logic with reachability connectives that, in turn, can be used for expressing interesting spatial properties, such as "being near to" or "being surrounded by". SLCS constitutes the kernel of a solid logical framework for reasoning about discrete space, such as graphs and digital images, interpreted as quasi discrete closure spaces. Following a recently developed geometric semantics of Modal Logic, we propose an interpretation of SLCS in continuous space, admitting a geometric spatial model checking procedure, by resorting to models based on polyhedra. Such representations of space are increasingly relevant in many domains of application, due to recent developments of 3D scanning and visualisation techniques that exploit mesh processing. We introduce PolyLogicA, a geometric spatial model checker for SLCS formulas on polyhedra and demonstrate feasibility of our approach on two 3D polyhedral models of realistic size. Finally, we introduce a geometric definition of bisimilarity, proving that it characterises logical equivalence

    Modal Languages for Topology: Expressivity and Definability

    Get PDF
    In this paper we study the expressive power and definability for (extended) modal languages interpreted on topological spaces. We provide topological analogues of the van Benthem characterization theorem and the Goldblatt-Thomason definability theorem in terms of the well established first-order topological language LtL_t

    Geometric Model Checking of Continuous Space

    Get PDF
    Topological Spatial Model Checking is a recent paradigm where model checking techniques are developed for the topological interpretation of Modal Logic. The Spatial Logic of Closure Spaces, SLCS, extends Modal Logic with reachability connectives that, in turn, can be used for expressing interesting spatial properties, such as "being near to" or "being surrounded by". SLCS constitutes the kernel of a solid logical framework for reasoning about discrete space, such as graphs and digital images, interpreted as quasi discrete closure spaces. Following a recently developed geometric semantics of Modal Logic, we propose an interpretation of SLCS in continuous space, admitting a geometric spatial model checking procedure, by resorting to models based on polyhedra. Such representations of space are increasingly relevant in many domains of application, due to recent developments of 3D scanning and visualisation techniques that exploit mesh processing. We introduce PolyLogicA, a geometric spatial model checker for SLCS formulas on polyhedra and demonstrate feasibility of our approach on two 3D polyhedral models of realistic size. Finally, we introduce a geometric definition of bisimilarity, proving that it characterises logical equivalence
    corecore