69 research outputs found

    Syntaphilin Ubiquitination Regulates Mitochondrial Dynamics and Tumor Cell Movements.

    Get PDF
    Syntaphilin (SNPH) inhibits the movement of mitochondria in tumor cells, preventing their accumulation at the cortical cytoskeleton and limiting the bioenergetics of cell motility and invasion. Although this may suppress metastasis, the regulation of the SNPH pathway is not well understood. Using a global proteomics screen, we show that SNPH associates with multiple regulators of ubiquitin-dependent responses and is ubiquitinated by the E3 ligase CHIP (or STUB1) on Lys111 and Lys153 in the microtubule-binding domain. SNPH ubiquitination did not result in protein degradation, but instead anchored SNPH on tubulin to inhibit mitochondrial motility and cycles of organelle fusion and fission, that is dynamics. Expression of ubiquitination-defective SNPH mutant Lys111!Arg or Lys153!Arg increased the speed and distance traveled by mitochondria, repositioned mitochondria to the cortical cytoskeleton, and supported heightened tumor chemotaxis, invasion, and metastasis in vivo. Interference with SNPH ubiquitination activated mitochondrial dynamics, resulting in increased recruitment of the fission regulator dynamin-related protein-1 (Drp1) to mitochondria and Drp1-dependent tumor cell motility. These data uncover nondegradative ubiquitination of SNPH as a key regulator of mitochondrial trafficking and tumor cell motility and invasion. In this way, SNPH may function as a unique, ubiquitination-regulated suppressor of metastasis

    Hospital Based Emergency Department Visits Attributed to Child Physical Abuse in United States: Predictors of In-Hospital Mortality

    Get PDF
    Objectives: To describe nationally representative outcomes of physical abuse injuries in children necessitating Emergency Department (ED) visits in United States. The impact of various injuries on mortality is examined. We hypothesize that physical abuse resulting in intracranial injuries are associated with worse outcome. Materials and Methods We performed a retrospective analysis of the Nationwide Emergency Department Sample (NEDS), the largest all payer hospital based ED database, for the years 2008–2010. All ED visits and subsequent hospitalizations with a diagnosis of “Child physical abuse” (Battered baby or child syndrome) due to various injuries were identified using ICD-9-CM (International Classification of Diseases, 9th Revision, Clinical Modification) codes. In addition, we also examined the prevalence of sexual abuse in this cohort. A multivariable logistic regression model was used to examine the association between mortality and types of injuries after adjusting for a multitude of patient and hospital level factors. Results: Of the 16897 ED visits that were attributed to child physical abuse, 5182 (30.7%) required hospitalization. Hospitalized children were younger than those released treated and released from the ED (1.9 years vs. 6.4 years). Male or female partner of the child’s parent/guardian accounted for >45% of perpetrators. Common injuries in hospitalized children include- any fractures (63.5%), intracranial injuries (32.3%) and crushing/internal injuries (9.1%). Death occurred in 246 patients (13 in ED and 233 following hospitalization). Amongst the 16897 ED visits, 1.3% also had sexual abuse. Multivariable analyses revealed each 1 year increase in age was associated with a lower odds of mortality (OR = 0.88, 95% CI = 0.81–0.96, p<0.0001). Females (OR = 2.39, 1.07–5.34, p = 0.03), those with intracranial injuries (OR = 65.24, 27.57–154.41, p<0.0001), or crushing/internal injury (OR = 4.98, 2.24–11.07, p<0.0001) had higher odds of mortality compared to their male counterparts. Conclusions: In this large cohort of physically abused children, younger age, females and intracranial or crushing/internal injuries were independent predictors of mortality. Identification of high risk cohorts in the ED may enable strengthening of existing screening programs and optimization of outcomes

    Noncommutative probability, matrix models, and quantum orbifold geometry

    Get PDF
    Inspired by the intimate relationship between Voiculescu's noncommutative probability theory (of type A) and large-N matrix models in physics, we look for physical models related to noncommutative probability theory of type B. These turn out to be fermionic matrix-vector models at the double large-N limit. In the context of string theory, they describe different orbifolded string worldsheets with boundaries. Their critical exponents coincide with that of ordinary string worldsheets, but their renormalised tree-level one-boundary amplitudes differ.Comment: 22 pages, 8 eps figures, LaTeX2.09; title changed, mistakes correcte

    Cumulant Expansions and the Spin-Boson Problem

    Full text link
    The dynamics of the dissipative two-level system at zero temperature is studied using three different cumulant expansion techniques. The relative merits and drawbacks of each technique are discussed. It is found that a new technique, the non-crossing cumulant expansion, appears to embody the virtues of the more standard cumulant methods.Comment: 26 pages, LaTe

    The Wasteland of Random Supergravities

    Full text link
    We show that in a general \cal{N} = 1 supergravity with N \gg 1 scalar fields, an exponentially small fraction of the de Sitter critical points are metastable vacua. Taking the superpotential and Kahler potential to be random functions, we construct a random matrix model for the Hessian matrix, which is well-approximated by the sum of a Wigner matrix and two Wishart matrices. We compute the eigenvalue spectrum analytically from the free convolution of the constituent spectra and find that in typical configurations, a significant fraction of the eigenvalues are negative. Building on the Tracy-Widom law governing fluctuations of extreme eigenvalues, we determine the probability P of a large fluctuation in which all the eigenvalues become positive. Strong eigenvalue repulsion makes this extremely unlikely: we find P \propto exp(-c N^p), with c, p being constants. For generic critical points we find p \approx 1.5, while for approximately-supersymmetric critical points, p \approx 1.3. Our results have significant implications for the counting of de Sitter vacua in string theory, but the number of vacua remains vast.Comment: 39 pages, 9 figures; v2: fixed typos, added refs and clarification

    MYC regulates fatty acid metabolism through a multigenic program in claudin-low triple negative breast cancer

    Get PDF
    Background: Recent studies have suggested that fatty acid oxidation (FAO) is a key metabolic pathway for the growth of triple negative breast cancers (TNBCs), particularly those that have high expression of MYC. However, the underlying mechanism by which MYC promotes FAO remains poorly understood. Methods: We used a combination of metabolomics, transcriptomics, bioinformatics, and microscopy to elucidate a potential mechanism by which MYC regulates FAO in TNBC. Results: We propose that MYC induces a multigenic program that involves changes in intracellular calcium signalling and fatty acid metabolism. We determined key roles for fatty acid transporters (CD36), lipases (LPL), and kinases (PDGFRB, CAMKK2, and AMPK) that each contribute to promoting FAO in human mammary epithelial cells that express oncogenic levels of MYC. Bioinformatic analysis further showed that this multigenic program is highly expressed and predicts poor survival in the claudin-low molecular subtype of TNBC, but not other subtypes of TNBCs, suggesting that efforts to target FAO in the clinic may best serve claudin-low TNBC patients. Conclusion: We identified critical pieces of the FAO machinery that have the potential to be targeted for improved treatment of patients with TNBC, especially the claudin-low molecular subtype

    STAT3/LKB1 controls metastatic prostate cancer by regulating mTORC1/CREB pathway

    Get PDF
    Prostate cancer (PCa) is a common and fatal type of cancer in men. Metastatic PCa (mPCa) is a major factor contributing to its lethality, although the mechanisms remain poorly understood. PTEN is one of the most frequently deleted genes in mPCa. Here we show a frequent genomic co-deletion of PTEN and STAT3 in liquid biopsies of patients with mPCa. Loss of Stat3 in a Pten-null mouse prostate model leads to a reduction of LKB1/pAMPK with simultaneous activation of mTOR/CREB, resulting in metastatic disease. However, constitutive activation of Stat3 led to high LKB1/pAMPK levels and suppressed mTORC1/CREB pathway, preventing mPCa development. Metformin, one of the most widely prescribed therapeutics against type 2 diabetes, inhibits mTORC1 in liver and requires LKB1 to mediate glucose homeostasis. We find that metformin treatment of STAT3/AR-expressing PCa xenografts resulted in significantly reduced tumor growth accompanied by diminished mTORC1/CREB, AR and PSA levels. PCa xenografts with deletion of STAT3/AR nearly completely abrogated mTORC1/CREB inhibition mediated by metformin. Moreover, metformin treatment of PCa patients with high Gleason grade and type 2 diabetes resulted in undetectable mTORC1 levels and upregulated STAT3 expression. Furthermore, PCa patients with high CREB expression have worse clinical outcomes and a significantly increased risk of PCa relapse and metastatic recurrence. In summary, we have shown that STAT3 controls mPCa via LKB1/pAMPK/mTORC1/CREB signaling, which we have identified as a promising novel downstream target for the treatment of lethal mPCa

    Timeless Links Replication Termination to Mitotic Kinase Activation

    Get PDF
    The mechanisms that coordinate the termination of DNA replication with progression through mitosis are not completely understood. The human Timeless protein (Tim) associates with S phase replication checkpoint proteins Claspin and Tipin, and plays an important role in maintaining replication fork stability at physical barriers, like centromeres, telomeres and ribosomal DNA repeats, as well as at termination sites. We show here that human Tim can be isolated in a complex with mitotic entry kinases CDK1, Auroras A and B, and Polo-like kinase (Plk1). Plk1 bound Tim directly and colocalized with Tim at a subset of mitotic structures in M phase. Tim depletion caused multiple mitotic defects, including the loss of sister-chromatid cohesion, loss of mitotic spindle architecture, and a failure to exit mitosis. Tim depletion caused a delay in mitotic kinase activity in vivo and in vitro, as well as a reduction in global histone H3 S10 phosphorylation during G2/M phase. Tim was also required for the recruitment of Plk1 to centromeric DNA and formation of catenated DNA structures at human centromere alpha satellite repeats. Taken together, these findings suggest that Tim coordinates mitotic kinase activation with termination of DNA replication
    • …
    corecore