1,995 research outputs found
Clay minerals in South Australian Holocene basaltic volcanogenic soils and implications for halloysite genesis and structure
The clay mineralogical composition was determined of 8 soils formed from pyroclastic ejecta (tephra) from adjacent 5000-year old basaltic volcanoes at Mounts Gambier and Schank in South Australia. Both nanocrystalline (short-range order) and crystalline aluminosilicates and also Fe oxides and hydroxides were identified in the soils. Allophane generally occurred to a greater extent in the 4 soils derived from glass-rich Mt Schank tephra than in most of those from glass-poor Mt Gambier tephra. Ferrihydrite occurred along with allophane. Smectite, kaolinite, illite, and an interstratified kaolinite-smectite comprised the crystalline minerals in these soils. There was no evidence for halloysite. Unlike in New Zealand, decreased leaching resulted in Si-rich allophane, rather than halloysite, forming in place of the Al-rich form of the same mineral. This result may indicate that ferrous iron is an essential impurity in halloysite. It was likely absent from these soils because their high pH due to underlying calcareous rocks precludes its occurrence. The probable requirement of Fe(II) as an essential component of halloysites may have been overlooked because of oxidation consequent upon the inevitable drying of samples prior to analyses
Typical Event Horizons in AdS/CFT
We consider the construction of local bulk operators in a black hole
background dual to a pure state in conformal field theory. The properties of
these operators in a microcanonical ensemble are studied. It has been argued in
the literature that typical states in such an ensemble contain firewalls, or
otherwise singular horizons. We argue this conclusion can be avoided with a
proper definition of the interior operators.Comment: 8 pages, 2 figures. arXiv admin note: text overlap with
arXiv:1310.799
Age of the Rotoehu Ash. Comment.
Suggests that the article by Whitehead & Ditchburn (1994), although presenting useful new data on 230Th/232Th analyses, is flawed and misleading in suggesting that the Rotoiti Tephra is considerably younger than c. 50 ka
Low-Shot Learning with Imprinted Weights
Human vision is able to immediately recognize novel visual categories after
seeing just one or a few training examples. We describe how to add a similar
capability to ConvNet classifiers by directly setting the final layer weights
from novel training examples during low-shot learning. We call this process
weight imprinting as it directly sets weights for a new category based on an
appropriately scaled copy of the embedding layer activations for that training
example. The imprinting process provides a valuable complement to training with
stochastic gradient descent, as it provides immediate good classification
performance and an initialization for any further fine-tuning in the future. We
show how this imprinting process is related to proxy-based embeddings. However,
it differs in that only a single imprinted weight vector is learned for each
novel category, rather than relying on a nearest-neighbor distance to training
instances as typically used with embedding methods. Our experiments show that
using averaging of imprinted weights provides better generalization than using
nearest-neighbor instance embeddings.Comment: CVPR 201
Holocene volcanic soils in the Mt. Gambier region, South Australia
Volcanic soils derived from mid-Holocene basaltic tephra in the Mt. Gambier region of South Australia have developed in a xeric moisture regime. We studied two soils, one at Mt Gambier (MTG) and the other at nearby Mt Schank (MTS). Both volcanoes were active ca. 6000 cal. years ago. The MTG soil has a high content of CaCO₃ (incorporated during eruption through limestone) and other exotic materials intermixed with basaltic tephra containing low amounts of glass. The MTS soil is derived mainly from basaltic tephra with high glass content and much less CaCO₃ than at MTG. These parent mineralogies have led to markedly different clay compositions and chemical properties: the MTS soil contains abundant allophane (mainly) and ferrihydrite with few layer silicate clays, whereas the MTG soil is dominated by layer silicate clays and low allophane or ferrihydrite. Both soils are near neutral or alkaline. The MTS soil has a melanic horizon and andic properties and is classed as a Melanoxerand. The MTG soil has weak andic properties with insufficient glass to enable it to be classed in the Andisols, and is instead a Calcixeroll
Parent materials of Yellow-brown loams in the Waikato-Coromandel district.
The yellow-brown loams of the Waikato-Coromandel region are derived from weathered airfall volcanic materials. These materials may be either direct airfall deposits, or erosion products of these deposits, described as reworked ash in some publications. In the erosion products small amounts of other rocks may be included in the parent materials, and these additions may modify to a slight degree the chemical and physical properties of the soil as a yellow-brown loam. In larger amounts these additions result in the formation of intergrades to yellow-brown earths or gley soils
Unsupervised Learning of Depth and Ego-Motion from Video
We present an unsupervised learning framework for the task of monocular depth
and camera motion estimation from unstructured video sequences. We achieve this
by simultaneously training depth and camera pose estimation networks using the
task of view synthesis as the supervisory signal. The networks are thus coupled
via the view synthesis objective during training, but can be applied
independently at test time. Empirical evaluation on the KITTI dataset
demonstrates the effectiveness of our approach: 1) monocular depth performing
comparably with supervised methods that use either ground-truth pose or depth
for training, and 2) pose estimation performing favorably with established SLAM
systems under comparable input settings.Comment: Accepted to CVPR 2017. Project webpage:
https://people.eecs.berkeley.edu/~tinghuiz/projects/SfMLearner
Discovery of halloysite books in a ~270,000 year-old buried tephra deposit in northern New Zealand
As part of a wider study examining the geomechanical properties, especially sensitivity, of sequences of Quaternary pyroclastic and associated deposits and buried soils in the landslide-prone western Bay of Plenty area near Tauranga, eastern North Island, we examined the mineralogy of a pale pinkish-grey tephra deposit directly beneath non-welded, siliceous Te Ranga Ignimbrite (~2 m thick) in a ~25 m high cutting at Tauriko.http://www.smectech.com.au/ACMS/ACMS_Conferences/ACMS21/ACMS%202010%20Abstracts/ACMS%202010%20S1A6_Wyatt%20et%20al%20(Lowe).pd
- …