2,861 research outputs found

    Void Statistics in Large Galaxy Redshift Surveys: Does Halo Occupation of Field Galaxies Depend on Environment?

    Full text link
    We use measurements of the projected galaxy correlation function w_p and galaxy void statistics to test whether the galaxy content of halos of fixed mass is systematically different in low density environments. We present new measurements of the void probability function (VPF) and underdensity probability function (UPF) from Data Release Four of the Sloan Digital Sky Survey, as well as new measurements of the VPF from the full data release of the Two-Degree Field Galaxy Redshift Survey. We compare these measurements to predictions calculated from models of the Halo Occupation Distribution (HOD) that are constrained to match both w_p and the space density of galaxies. The standard implementation of the HOD assumes that galaxy occupation depends on halo mass only, and is independent of local environment. For luminosity-defined samples, we find that the standard HOD prediction is a good match to the observations, and the data exclude models in which galaxy formation efficiency is reduced in low-density environments. More remarkably, we find that the void statistics of red and blue galaxies (at L ~ 0.4L_*) are perfectly predicted by standard HOD models matched to the correlation function of these samples, ruling out "assembly bias" models in which galaxy color is correlated with large-scale environment at fixed halo mass. We conclude that the luminosity and color of field galaxies are determined predominantly by the mass of the halo in which they reside and have little direct dependence on the environment in which the host halo formed. In broader terms, our results show that the sizes and emptiness of voids found in the distribution of L > 0.2L_* galaxies are in excellent agreement with the predictions of a standard cosmological model with a simple connection between galaxies and dark matter halos. (abridged)Comment: 20 emulateapj pages, 9 figures. submitted to Ap

    Photonic RF and microwave reconfigurable filters and true time delays based on an integrated optical Kerr frequency comb source

    Full text link
    We demonstrate advanced transversal radio frequency (RF) and microwave functions based on a Kerr optical comb source generated by an integrated micro-ring resonator. We achieve extremely high performance for an optical true time delay aimed at tunable phased array antenna applications, as well as reconfigurable microwave photonic filters. Our results agree well with theory. We show that our true time delay would yield a phased array antenna with features that include high angular resolution and a wide range of beam steering angles, while the microwave photonic filters feature high Q factors, wideband tunability, and highly reconfigurable filtering shapes. These results show that our approach is a competitive solution to implementing reconfigurable, high performance and potentially low cost RF and microwaveComment: 15 pages, 11 Figures, 60 Reference

    Cosmic Voids and Galaxy Bias in the Halo Occupation Framework

    Full text link
    (Abridged) We investigate the power of void statistics to constrain galaxy bias and the amplitude of dark matter fluctuations. We use the halo occupation distribution (HOD) framework to describe the relation between galaxies and dark matter. After choosing HOD parameters that reproduce the mean space density n_gal and projected correlation function w_p measured for galaxy samples with M_r<-19 and M_r<-21 from the Sloan Digital Sky Survey (SDSS), we predict the void probability function (VPF) and underdensity probability function (UPF) of these samples by populating the halos of a large, high-resolution N-body simulation. If we make the conventional assumption that the HOD is independent of large scale environment at fixed halo mass, then models constrained to match n_gal and w_p predict nearly identical void statistics, independent of the scatter between halo mass and central galaxy luminosity or uncertainties in HOD parameters. Models with sigma_8=0.7 and sigma_8=0.9 also predict very similar void statistics. However, the VPF and UPF are sensitive to environmental variations of the HOD in a regime where these variations have little impact on w_p. For example, doubling the minimum host halo mass in regions with large scale (5 Mpc/h) density contrast delta<-0.65 has a readily detectable impact on void probabilities of M_r<-19 galaxies, and a similar change for delta<-0.2 alters the void probabilities of M_r<-21 galaxies at a detectable level. The VPF and UPF provide complementary information about the onset and magnitude of density- dependence in the HOD. By detecting or ruling out HOD changes in low density regions, void statistics can reduce systematic uncertainties in the cosmological constraints derived from HOD modeling, and, more importantly, reveal connections between halo formation history and galaxy properties.Comment: emulateapj, 16 pages, 13 figure

    Variation of Galactic Bar Length with Amplitude and Density as Evidence for Bar Growth over a Hubble Time

    Full text link
    K_s-band images of 20 barred galaxies show an increase in the peak amplitude of the normalized m=2 Fourier component with the R_25-normalized radius at this peak. This implies that longer bars have higher m=2m=2 amplitudes. The long bars also correlate with an increased density in the central parts of the disks, as measured by the luminosity inside 0.25R_25 divided by the cube of this radius in kpc. Because denser galaxies evolve faster, these correlations suggest that bars grow in length and amplitude over a Hubble time with the fastest evolution occurring in the densest galaxies. All but three of the sample have early-type flat bars; there is no clear correlation between the correlated quantities and the Hubble type.Comment: ApJ Letters, 670, L97, preprint is 7 pages, 4 figure

    Augmenting the Space Domain Awareness Ground Architecture via Decision Analysis and Multi-Objective Optimization

    Get PDF
    Purpose — The US Government is challenged to maintain pace as the world’s de facto provider of space object cataloging data. Augmenting capabilities with nontraditional sensors present an expeditious and low-cost improvement. However, the large tradespace and unexplored system of systems performance requirements pose a challenge to successful capitalization. This paper aims to better define and assess the utility of augmentation via a multi-disiplinary study. Design/methodology/approach — Hypothetical telescope architectures are modeled and simulated on two separate days, then evaluated against performance measures and constraints using multi-objective optimization in a heuristic algorithm. Decision analysis and Pareto optimality identifies a set of high-performing architectures while preserving decision-maker design flexibility. Findings — Capacity, coverage and maximum time unobserved are recommended as key performance measures. A total of 187 out of 1017 architectures were identified as top performers. A total of 29% of the sensors considered are found in over 80% of the top architectures. Additional considerations further reduce the tradespace to 19 best choices which collect an average of 49–51 observations per space object with a 595–630 min average maximum time unobserved, providing redundant coverage of the Geosynchronous Orbit belt. This represents a three-fold increase in capacity and coverage and a 2 h (16%) decrease in the maximum time unobserved compared to the baseline government-only architecture as-modeled. Originality/value — This study validates the utility of an augmented network concept using a physics-based model and modern analytical techniques. It objectively responds to policy mandating cataloging improvements without relying solely on expert-derived point solutions

    Harnessing optical micro-combs for microwave photonics

    Full text link
    In the past decade, optical frequency combs generated by high-Q micro-resonators, or micro-combs, which feature compact device footprints, high energy efficiency, and high-repetition-rates in broad optical bandwidths, have led to a revolution in a wide range of fields including metrology, mode-locked lasers, telecommunications, RF photonics, spectroscopy, sensing, and quantum optics. Among these, an application that has attracted great interest is the use of micro-combs for RF photonics, where they offer enhanced functionalities as well as reduced size and power consumption over other approaches. This article reviews the recent advances in this emerging field. We provide an overview of the main achievements that have been obtained to date, and highlight the strong potential of micro-combs for RF photonics applications. We also discuss some of the open challenges and limitations that need to be met for practical applications.Comment: 32 Pages, 13 Figures, 172 Reference
    • …
    corecore