202 research outputs found
Petroleum evolution within the Tarim Basin, northwestern China: Insights from organic geochemistry, fluid inclusions, and rheniumâosmium geochronology of the Halahatang oil field
The newly discovered Halahatang oil field in the northern Tarim Basin has a potential resource of more than 70 billion bbl of oil. Oil organic geochemical data from the Halahatang oil field indicate that the oils are of moderate maturity, biodegraded, and represent one oil family, derived from the same Paleozoic marine source. Modeling of coeval aqueous and hydrocarbon-bearing inclusion data provide fluid trapping temperatures and pressures of 100°C to 110°C and approximately 39 to 59 MPa (âŒ5656â8557 psi), respectively. The fluid inclusion data coupled with the previous basin model studies suggest a single prolonged oil migration event during the Permian. The ReâOs isotope data of the oil yields an early Permian ReâOs age of 285 ± 48 Ma. The age agrees with the timing of maturation of the Paleozoic source via burial history modeling but is slightly older (âŒ5â55 m.y.) than the oil migration and accumulation timing implied by the basin modeling coupled with fluid inclusion analysis and the published reservoir illite KâAr dates. Thus, the oil ReâOs date suggests that oil generation in the Halahatang depression of the Tarim Basin occurred during the early Permian rather than the Silurian as previously proposed, with subsequent oil migration and accumulation occurring during the middleâlate Permian as recorded by basin modeling, coupled with fluid inclusion analysis and illite KâAr dating. In addition to promoting petroleum exploration in the Tarim Basin, this study, which combines crude oil ReâOs isotope dating and traditional analytical methods (organic geochemistry and fluid inclusion analysis) to constrain petroleum evolution, is applicable to hydrocarbon systems worldwide
The 2015-2016 El Nino and the Response of the Carbon Cycle: Findings from NASA's OCO-2 Mission
The El Nino Southern Oscillation (ENSO) is the most important mode of tropical climate variability on interannual to decadal time scales. Correlations between atmospheric CO2 growth rate and ENSO activity are relatively well known but the magnitude of this correlation, the contribution from tropical marine vs. terrestrial flux components, and the causal mechanisms, are poorly constrained in space and time. The launch of NASA's Orbiting Carbon Observatory-2 (OCO-2) mission in July 2014 was rather timely given the development of strong ENSO conditions over the tropical Pacific Ocean in 2015-2016. In this presentation, we will discuss how the high-density observations from OCO-2 provided us with a novel dataset to resolve the linkages between El Nino and atmospheric CO2. Along with information from in situ observations of CO2 from NOAA's Tropical Atmosphere Ocean (TAO) project and atmospheric CO2 from the Scripps CO2 Program, and other remote-sensing missions, we are able to piece together the time dependent response of atmospheric CO2 concentrations over the Tropics. Our findings confirm the hypothesis from studies following the 1997-1998 El Nino event that an early reduction in CO2 outgassing from the tropical Pacific Ocean is later reversed by enhanced net CO2 emissions from the terrestrial biosphere. This implies that a component of the interannual variability (IAV) in the growth rate of atmospheric CO2, which has typically been used to constrain the climate sensitivity of tropical land carbon fluxes, is strongly influenced and modified by ocean fluxes during the early phase of the ENSO event. Our analyses shed further light on the understanding of the marine vs. terrestrial partitioning of tropical carbon fluxes during El Nino events, their relative contributions to the global atmospheric CO2 growth rate, and provide clues about the sensitivity of the carbon cycle to climate forcing on interannual time scales
Interannual variations in continental-scale net carbon exchange and sensitivity to observing networks estimated from atmospheric CO2 inversions for the period 1980 to 2005
Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 22 (2008): GB3025, doi:10.1029/2007GB003082.Interannually varying net carbon exchange fluxes from the TransCom 3 Level 2 Atmospheric Inversion Intercomparison Experiment are presented for the 1980 to 2005 time period. The fluxes represent the model mean, net carbon exchange for 11 land and 11 ocean regions after subtraction of fossil fuel CO2 emissions. Both aggregated regional totals and the individual regional estimates are accompanied by a model uncertainty and model spread. We find that interannual variability is larger on the land than the ocean, with total land exchange correlated to the timing of both El Niño/Southern Oscillation (ENSO) as well as the eruption of Mt. Pinatubo. The post-Pinatubo negative flux anomaly is evident across much of the tropical and northern extratropical land regions. In the oceans, the tropics tend to exhibit the greatest level of interannual variability, while on land, the interannual variability is slightly greater in the tropics and northern extratropics. The interannual variation in carbon flux estimates aggregated by land and ocean across latitudinal bands remains consistent across eight different CO2 observing networks. The interannual variation in carbon flux estimates for individual flux regions remains mostly consistent across the individual observing networks. At all scales, there is considerable consistency in the interannual variations among the 13 participating model groups. Finally, consistent with other studies using different techniques, we find a considerable positive net carbon flux anomaly in the tropical land during the period of the large ENSO in 1997/1998 which is evident in the Tropical Asia, Temperate Asia, Northern African, and Southern Africa land regions. Negative anomalies are estimated for the East Pacific Ocean and South Pacific Ocean regions. Earlier ENSO events of the 1980s are most evident in southern land positive flux anomalies
Characterization of Chronic Gastritis in Lynch Syndrome Patients With Gastric Adenocarcinoma
Background: Gastric cancer is one of the Lynch syndrome (LS)-associated malignancies. Previous studies have suggested that LS patients with gastric cancer also had chronic atrophic gastritis in the background mucosa, but further histologic characterization was not attempted. This study aims to understand the histologic features of background chronic gastritis in LS patients with gastric adenocarcinoma.
Methods: Eleven LS-associated gastric cancer cases were collected from five institutions. Demographics and clinical features were retrieved by review of medical charts. Pathological material was reviewed for tumor location and histologic type. In addition, non-neoplastic gastric mucosa was assessed for inflammation (chronic and active), atrophy, intestinal metaplasia (IM) in the antrum and body, as well as pyloric gland metaplasia and enterochromaffin-like (ECL) cell hyperplasia in the body.
Results: Eleven LS patients with gastric cancer (four male and seven female) with a mean age of 63 years (range: 23 - 83) were included. Ten (90.9%) had personal cancer histories; however none of the patients had family history of gastric cancer. Eight (72.7%) patients underwent gastrectomy and three had endoscopic resection. Nine (81.8%) patients had tumor in the fundus and/or body and two had tumor present in the antrum. Seven (63.6%) cases were intestinal type or mixed type carcinoma, and the remaining four were signet ring cell carcinoma. Eight (of 11, 72.7%) patients had chronic gastritis, five (45.4%) had atrophy, and four (36.3%) had intestinal metaplasia. Four of five patients with both antrum and body mucosa available for evaluation (80%), demonstrated body-predominant chronic gastritis. Four patients had germline MLH1 alterations and all of these patients had chronic gastritis, including one Helicobacter pylori (H. pylori) gastritis and three H. pylori-negative gastritis.
Conclusions: None of LS patients with gastric cancer in our cohort had a family history of gastric cancer. Gastric adenocarcinomas in LS patients were primarily located in the fundus and/or body. Two-thirds of these tumors were of intestinal type and had a background chronic, H. pylori-negative gastritis. These results support a chronic atrophic gastritis with intestinal metaplasia-dysplasia-carcinoma sequence in LS-related gastric tumorigenesis, particularly in MLH1-mutated LS patients
Giardia Flagellar Motility Is Not Directly Required to Maintain Attachment to Surfaces
Giardia trophozoites attach to the intestinal microvilli (or inert surfaces) using an undefined âsuction-basedâ mechanism, and remain attached during cell division to avoid peristalsis. Flagellar motility is a key factor in Giardia's pathogenesis and colonization of the host small intestine. Specifically, the beating of the ventral flagella, one of four pairs of motile flagella, has been proposed to generate a hydrodynamic force that results in suction-based attachment via the adjacent ventral disc. We aimed to test this prevailing âhydrodynamic modelâ of attachment mediated by flagellar motility. We defined four distinct stages of attachment by assessing surface contacts of the trophozoite with the substrate during attachment using TIRF microscopy (TIRFM). The lateral crest of the ventral disc forms a continuous perimeter seal with the substrate, a cytological indication that trophozoites are fully attached. Using trophozoites with two types of molecularly engineered defects in flagellar beating, we determined that neither ventral flagellar beating, nor any flagellar beating, is necessary for the maintenance of attachment. Following a morpholino-based knockdown of PF16, a central pair protein, both the beating and morphology of flagella were defective, but trophozoites could still initiate proper surface contacts as seen using TIRFM and could maintain attachment in several biophysical assays. Trophozoites with impaired motility were able to attach as well as motile cells. We also generated a strain with defects in the ventral flagellar waveform by overexpressing a dominant negative form of alpha2-annexin::GFP (D122A, D275A). This dominant negative alpha2-annexin strain could initiate attachment and had only a slight decrease in the ability to withstand normal and shear forces. The time needed for attachment did increase in trophozoites with overall defective flagellar beating, however. Thus while not directly required for attachment, flagellar motility is important for positioning and orienting trophozoites prior to attachment. Drugs affecting flagellar motility may result in lower levels of attachment by indirectly limiting the number of parasites that can position the ventral disc properly against a surface and against peristaltic flow
Rapid Environmental Change over the Past Decade Revealed by Isotopic Analysis of the California Mussel in the Northeast Pacific
The anthropogenic input of fossil fuel carbon into the atmosphere results in increased carbon dioxide (CO2) into the oceans, a process that lowers seawater pH, decreases alkalinity and can inhibit the production of shell material. Corrosive water has recently been documented in the northeast Pacific, along with a rapid decline in seawater pH over the past decade. A lack of instrumentation prior to the 1990s means that we have no indication whether these carbon cycle changes have precedence or are a response to recent anthropogenic CO2 inputs. We analyzed stable carbon and oxygen isotopes (ÎŽ13C, ÎŽ18O) of decade-old California mussel shells (Mytilus californianus) in the context of an instrumental seawater record of the same length. We further compared modern shells to shells from 1000 to 1340 years BP and from the 1960s to the present and show declines in the ÎŽ13C of modern shells that have no historical precedent. Our finding of decline in another shelled mollusk (limpet) and our extensive environmental data show that these ÎŽ13C declines are unexplained by changes to the coastal food web, upwelling regime, or local circulation. Our observed decline in shell ÎŽ13C parallels other signs of rapid changes to the nearshore carbon cycle in the Pacific, including a decline in pH that is an order of magnitude greater than predicted by an equilibrium response to rising atmospheric CO2, the presence of low pH water throughout the region, and a record of a similarly steep decline in ÎŽ13C in algae in the Gulf of Alaska. These unprecedented changes and the lack of a clear causal variable underscores the need for better quantifying carbon dynamics in nearshore environments
A multi-decade record of high quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT)
The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled fCO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.7 million fCO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.6 million fCO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) âliving dataâ publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014). Individual data set files, included in the synthesis product, can be downloaded here: doi:10.1594/PANGAEA.849770. The gridded products are available here: doi:10.3334/CDIAC/OTG.SOCAT_V3_GRID
Contribution of ocean, fossil fuel, land biosphere, and biomass burning carbon fluxes to seasonal and interannual variability in atmospheric CO2
Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): G01010, doi:10.1029/2007JG000408.Seasonal and interannual variability in atmospheric carbon dioxide (CO2) concentrations was simulated using fluxes from fossil fuel, ocean and terrestrial biogeochemical models, and a tracer transport model with time-varying winds. The atmospheric CO2 variability resulting from these surface fluxes was compared to observations from 89 GLOBALVIEW monitoring stations. At northern hemisphere stations, the model simulations captured most of the observed seasonal cycle in atmospheric CO2, with the land tracer accounting for the majority of the signal. The ocean tracer was 3â6 months out of phase with the observed cycle at these stations and had a seasonal amplitude only âŒ10% on average of observed. Model and observed interannual CO2 growth anomalies were only moderately well correlated in the northern hemisphere (R ⌠0.4â0.8), and more poorly correlated in the southern hemisphere (R < 0.6). Land dominated the interannual variability (IAV) in the northern hemisphere, and biomass burning in particular accounted for much of the strong positive CO2 growth anomaly observed during the 1997â1998 El Niño event. The signals in atmospheric CO2 from the terrestrial biosphere extended throughout the southern hemisphere, but oceanic fluxes also exerted a strong influence there, accounting for roughly half of the IAV at many extratropical stations. However, the modeled ocean tracer was generally uncorrelated with observations in either hemisphere from 1979â2004, except during the weak El Niño/post-Pinatubo period of the early 1990s. During that time, model results suggested that the ocean may have accounted for 20â25% of the observed slowdown in the atmospheric CO2 growth rate.We acknowledge the support of NASA
grant NNG05GG30G and NSF grant ATM0628472
Genetic analysis and natural history of Charcot-Marie-Tooth disease CMTX1 due to GJB1 variants
Charcot-Marie-Tooth disease (CMT) due to GJB1 variants (CMTX1) is the second most common form of CMT. It is an X-linked disorder characterised by progressive sensory and motor neuropathy with males affected more severely than females. Many reported GJB1 variants remain classified as variants of uncertain significance (VUS). In this large, international, multicentre study we prospectively collected demographic, clinical and genetic data on patients with CMT associated with GJB1 variants. Pathogenicity for each variant was defined using adapted American College of Medical Genetics criteria. Baseline and longitudinal analyses were conducted to study genotype-phenotype correlations, to calculate longitudinal change using the CMT Examination Score (CMTES), to compare males versus females, and pathogenic/likely pathogenic (P/LP) variants versus VUS. We present 387 patients from 295 families harbouring 154 variants in GJB1. Of these, 319 patients (82.4%) were deemed to have P/LP variants, 65 had VUS (16.8%) and 3 benign variants (0.8%; excluded from analysis); an increased proportion of patients with P/LP variants compared with using ClinVar's classification (74.6%). Male patients (166/319, 52.0%, P/LP only) were more severely affected at baseline. Baseline measures in patients with P/LP variants and VUS showed no significant differences, and regression analysis suggested the disease groups were near identical at baseline. Genotype-phenotype analysis suggested c.-17G>A produces the most severe phenotype of the five most common variants, and missense variants in the intracellular domain are less severe than other domains. Progression of disease was seen with increasing CMTES over time up to 8 years follow-up. Standard response mean (SRM), a measure of outcome responsiveness, peaked at 3 years with moderate responsiveness (change in CMTES (ÎCMTES) = 1.3 ± 2.6, p = 0.00016, SRM = 0.50). Males and females progressed similarly up to 8 years, but baseline regression analysis suggested that over a longer period, females progress more slowly. Progression was most pronounced for mild phenotypes (CMTES = 0-7; 3-year ÎCMTES = 2.3 ± 2.5, p = 0.001, SRM = 0.90). Enhanced variant interpretation has yielded an increased proportion of GJB1 variants classified as P/LP and will aid future variant interpretation in this gene. Baseline and longitudinal analysis of this large cohort of CMTX1 patients describes the natural history of the disease including the rate of progression; CMTES showed moderate responsiveness for the whole group at 3 years and higher responsiveness for the mild group at 3, 4 and 5 years. These results have implications for patient selection for upcoming clinical trials
- âŠ