2,225 research outputs found

    Selection and photometric properties of K+A galaxies

    Full text link
    Two different simple measurements of galaxy star formation rate with different timescales are compared empirically on 156,395156,395 fiber spectra of galaxies with r<17.77r<17.77 mag taken from the Sloan Digital Sky Survey in the redshift range 0.05<z<0.200.05<z<0.20: a ratio \Aamp / \Kamp found by fitting a linear sum of an average old stellar poplulation spectrum (\Kamp) and average A-star spectrum (\Aamp) to the galaxy spectrum, and the equivalent width (EW) of the \Halpha emission line. The two measures are strongly correlated, but there is a small clearly separated population of outliers from the median correlation that display excess \Aamp /\Kamp relative to \Halpha EW. These ``K+A'' (or ``E+A'') galaxies must have dramatically decreased their star-formation rates over the last 1\sim 1 Gyr. The K+A luminosity distribution is very similar to that of the total galaxy population. The K+A population appears to be bulge-dominated, but bluer and higher surface-brightness than normal bulge-dominated galaxies; it appears that K+A galaxies will fade with time into normal bulge-dominated galaxies. The inferred rate density for K+A galaxy formation is 104h3Mpc3Gyr1\sim 10^{-4} h^3 Mpc^{-3} Gyr^{-1} at redshift z0.1z\sim 0.1. These events are taking place in the field; K+A galaxies don't primarily lie in the high-density environments or clusters typical of bulge-dominated populations.Comment: submitted to Ap

    Tonic and Phasic Amperometric Monitoring of Dopamine Using Microelectrode Arrays in Rat Striatum

    Get PDF
    Here we report a novel microelectrode array recording approach to measure tonic (resting) and phasic release of dopamine (DA) in DA-rich areas such as the rat striatum and nucleus accumbens. The resulting method is tested in intact central nervous system (CNS) and in animals with extensive loss of the DA pathway using the neurotoxin, 6-hydroxyDA (6-OHDA). The self-referencing amperometric recording method employs Nafion-coated with and without m-phenylenediamine recording sites that through real-time subtraction allow for simultaneous measures of tonic DA levels and transient changes due to depolarization and amphetamine-induced release. The recording method achieves low-level measures of both tonic and phasic DA with decreased recording drift allowing for enhanced sensitivity normally not achieved with electrochemical sensors in vivo

    2-Bromo-2-methyl-N-(4-nitro­phen­yl)propanamide

    Get PDF
    The title compound, C10H11BrN2O3, exhibits a small twist between the amide residue and benzene ring [the C—N—C—C torsion angle = 12.7 (4)°]. The crystal structure is stabilized by weak N—H⋯O, C—H⋯Br and C—H⋯O inter­actions. These lead to supra­molecular layers in the bc plane

    The No-Pole Condition in Landau gauge: Properties of the Gribov Ghost Form-Factor and a Constraint on the 2d Gluon Propagator

    Get PDF
    We study the Landau-gauge Gribov ghost form-factor sigma(p^2) for SU(N) Yang-Mills theories in the d-dimensional case. We find a qualitatively different behavior for d=3,4 w.r.t. d=2. In particular, considering any (sufficiently regular) gluon propagator D(p^2) and the one-loop-corrected ghost propagator G(p^2), we prove in the 2d case that sigma(p^2) blows up in the infrared limit p -> 0 as -D(0)\ln(p^2). Thus, for d=2, the no-pole condition \sigma(p^2) 0) can be satisfied only if D(0) = 0. On the contrary, in d=3 and 4, sigma(p^2) is finite also if D(0) > 0. The same results are obtained by evaluating G(p^2) explicitly at one loop, using fitting forms for D(p^2) that describe well the numerical data of D(p^2) in d=2,3,4 in the SU(2) case. These evaluations also show that, if one considers the coupling constant g^2 as a free parameter, G(p^2) admits a one-parameter family of behaviors (labelled by g^2), in agreement with Boucaud et al. In this case the condition sigma(0) <= 1 implies g^2 <= g^2_c, where g^2_c is a 'critical' value. Moreover, a free-like G(p^2) in the infrared limit is obtained for any value of g^2 < g^2_c, while for g^2 = g^2_c one finds an infrared-enhanced G(p^2). Finally, we analyze the Dyson-Schwinger equation (DSE) for sigma(p^2) and show that, for infrared-finite ghost-gluon vertices, one can bound sigma(p^2). Using these bounds we find again that only in the d=2 case does one need to impose D(0) = 0 in order to satisfy the no-pole condition. The d=2 result is also supported by an analysis of the DSE using a spectral representation for G(p^2). Thus, if the no-pole condition is imposed, solving the d=2 DSE cannot lead to a massive behavior for D(p^2). These results apply to any Gribov copy inside the so-called first Gribov horizon, i.e. the 2d result D(0) = 0 is not affected by Gribov noise. These findings are also in agreement with lattice data.Comment: 40 pages, 2 .eps figure

    Anomalously low PAH emission from low-luminosity galaxies

    Full text link
    The Spitzer Space Telescope First Look Survey Infrared Array Camera (IRAC) near and mid-infrared imaging data partially overlaps the Sloan Digital Sky Survey (SDSS), with 313 visually selected (r<17.6 mag) SDSS Main Sample galaxies in the overlap region. The 3.5 and 7.8 um properties of the galaxies are investigated in the context of their visual properties, where the IRAC [3.5] magnitude primarily measures starlight, and the [7.8] magnitude primarily measures PAH emission from the interstellar medium. As expected, we find a strong inverse correlation between [3.5]-[7.8] and visual color; galaxies red in visual colors (`red galaxies') tend to show very little dust and molecular emission (low `PAH-to-star' ratios), and galaxies blue in visual colors (`blue galaxies,' ie, star-forming galaxies) tend to show large PAH-to-star ratios. Red galaxies with high PAH-to-star ratios tend to be edge-on disks reddened by dust lanes. Simple, visually inferred attenuation corrections bring the visual colors of these galaxies in line with those of face-on disks; ie, PAH emission is closely related to attenuation-corrected, optically inferred star-formation rates. Blue galaxies with anomalously low PAH-to-star ratios are all low-luminosity star-forming galaxies. There is some weak evidence in this sample that the deficiency in PAH emission for these low-luminosity galaxies may be related to emission-line metallicity.Comment: submitted to ApJ. Because of some obscure arXiv bug, the RGB figure may appear correctly only in the PDF versio

    2-Bromo-N-(4-chloro­phen­yl)-2-methyl­propanamide

    Get PDF
    In the title mol­ecule, C10H11BrClNO, there is a twist between the mean plane of the amide group and the benzene ring [C(=O)—N—C—C torsion angle = −27.1 (3)°]. In the crystal, inter­molecular N—H⋯O and weak C—H⋯O hydrogen bonds link the mol­ecules into chains along [010]

    Adaptation of Microelectrode Array Technology for the Study of Anesthesia-Induced Neurotoxicity in the Intact Piglet Brain

    Get PDF
    Every year, millions of children undergo anesthesia for a multitude of procedures. However, studies in both animals and humans have called into question the safety of anesthesia in children, implicating anesthetics as potentially toxic to the brain in development. To date, no studies have successfully elucidated the mechanism(s) by which anesthesia may be neurotoxic. Animal studies allow investigation of such mechanisms, and neonatal piglets represent an excellent model to study these effects due to their striking developmental similarities to the human brain. This protocol adapts the use of enzyme-based microelectrode array (MEA) technology as a novel way to study the mechanism(s) of anesthesia-induced neurotoxicity (AIN). MEAs enable real-time monitoring of in vivo neurotransmitter activity and offer exceptional temporal and spatial resolution. It is hypothesized that anesthetic neurotoxicity is caused in part by glutamate dysregulation and MEAs offer a method to measure glutamate. The novel implementation of MEA technology in a piglet model presents a unique opportunity for the study of AIN

    2-Bromo-2-methyl-N-p-tolyl­propanamide

    Get PDF
    In the title mol­ecule, C11H14BrNO, there is twist between the mean plane of the amide group and the benzene ring [C(=O)—N—C C torsion angle = −31.2 (5)°]. In the crystal, inter­molecular N—H⋯O and weak C—H⋯O hydrogen bonds link mol­ecules into chains along [100]. The methyl group H atoms are disordered over two sets of sites with equal occupancy

    Machine Learning Model Based on Transthoracic Bioimpedance and Heart Rate Variability for Lung Fluid Accumulation Detection: Prospective Clinical Study

    Get PDF
    BACKGROUND: Accumulation of excess body fluid and autonomic dysregulation are clinically important characteristics of acute decompensated heart failure. We hypothesized that transthoracic bioimpedance, a noninvasive, simple method for measuring fluid retention in lungs, and heart rate variability, an assessment of autonomic function, can be used for detection of fluid accumulation in patients with acute decompensated heart failure. OBJECTIVE: We aimed to evaluate the performance of transthoracic bioimpedance and heart rate variability parameters obtained using a fluid accumulation vest with carbon black-polydimethylsiloxane dry electrodes in a prospective clinical study (System for Heart Failure Identification Using an External Lung Fluid Device; SHIELD). METHODS: We computed 15 parameters: 8 were calculated from the model to fit Cole-Cole plots from transthoracic bioimpedance measurements (extracellular, intracellular, intracellular-extracellular difference, and intracellular-extracellular parallel circuit resistances as well as fitting error, resonance frequency, tissue heterogeneity, and cellular membrane capacitance), and 7 were based on linear (mean heart rate, low-frequency components of heart rate variability, high-frequency components of heart rate variability, normalized low-frequency components of heart rate variability, normalized high-frequency components of heart rate variability) and nonlinear (principal dynamic mode index of sympathetic function, and principal dynamic mode index of parasympathetic function) analysis of heart rate variability. We compared the values of these parameters between 3 participant data sets: control (n=32, patients who did not have heart failure), baseline (n=23, patients with acute decompensated heart failure taken at the time of admittance to the hospital), and discharge (n=17, patients with acute decompensated heart failure taken at the time of discharge from hospital). We used several machine learning approaches to classify participants with fluid accumulation (baseline) and without fluid accumulation (control and discharge), termed with fluid and without fluid groups, respectively. RESULTS: Among the 15 parameters, 3 transthoracic bioimpedance (extracellular resistance, R0; difference in extracellular-intracellular resistance, R0 - Rinfinity, and tissue heterogeneity, alpha) and 3 heart rate variability (high-frequency, normalized low-frequency, and normalized high-frequency components) parameters were found to be the most discriminatory between groups (patients with and patients without heart failure). R0 and R0 - Rinfinity had significantly lower values for patients with heart failure than for those without heart failure (R0: P=.006; R0 - Rinfinity: P=.001), indicating that a higher volume of fluids accumulated in the lungs of patients with heart failure. A cubic support vector machine model using the 5 parameters achieved an accuracy of 92% for with fluid and without fluid group classification. The transthoracic bioimpedance parameters were related to intra- and extracellular fluid, whereas the heart rate variability parameters were mostly related to sympathetic activation. CONCLUSIONS: This is useful, for instance, for an in-home diagnostic wearable to detect fluid accumulation. Results suggest that fluid accumulation, and subsequently acute decompensated heart failure detection, could be performed using transthoracic bioimpedance and heart rate variability measurements acquired with a wearable vest. Emily Ensom, Eric Ding, Anna Hayes, Jarno Riistama, Chad Darling, David McManus, Ki H. Chon. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 27.08.2020

    The ecology and evolution of the monito del monte, a relict species from the southern South America temperate forests

    Get PDF
    The arboreal marsupial monito del monte (genus Dromiciops, with two recognized species) is a paradigmatic mammal. It is the sole living representative of the order Microbiotheria, the ancestor lineage of Australian marsupials. Also, this marsupial is the unique frugivorous mammal in the temperate rainforest, being the main seed disperser of several endemic plants of this ecosystem, thus acting as keystone species. Dromiciops is also one of the few hibernating mammals in South America, spending half of the year in a physiological dormancy where metabolism is reduced to 10% of normal levels. This capacity to reduce energy expenditure in winter contrasts with the enormous energy turnover rate they experience in spring and summer. The unique life history strategies of this living Microbiotheria, characterized by an alternation of life in the slow and fast lanes, putatively represent ancestral traits that permitted these cold-adapted mammals to survive in this environment. Here, we describe the ecological role of this emblematic marsupial, summarizing the ecophysiology of hibernation and sociality, updated phylogeographic relationships, reproductive cycle, trophic relationships, mutualisms, conservation, and threats. This marsupial shows high densities, despite presenting slow reproductive rates, a paradox explained by the unique characteristics of its three-dimensional habitat. We finally suggest immediate actions to protect these species that may be threatened in the near future due to habitat destruction and climate change.Fil: Fontúrbel, Francisco E.. Pontificia Universidad Católica de Valparaíso; ChileFil: Franco, Lida M.. Universidad de Ibagué; ColombiaFil: Bozinovic, Francisco. Pontificia Universidad Católica de Chile; ChileFil: Quintero Galvis, Julian F.. Universidad Austral de Chile; ChileFil: Mejías, Carlos. Universidad Austral de Chile; ChileFil: Amico, Guillermo Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Vazquez, Miriam Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Sabat, Pablo. Universidad de Chile; ChileFil: Sánchez Hernández, Juan C.. Universidad de Castilla-La Mancha; EspañaFil: Watson, David M.. Charles Sturt University; AustraliaFil: Saenz Agudelo, Pablo. Universidad Austral de Chile; ChileFil: Nespolo, Roberto F.. Universidad Austral de Chile; Chil
    corecore