358 research outputs found

    Calcium signaling

    Get PDF

    Sorting out MIC, TRP, and CRAC Ion Channels

    Get PDF

    Calcium release from the nucleus by InsP3 receptor channels

    Get PDF
    AbstractThe nucleus is surrounded by a double membrane separating it from the cytoplasm. The perinuclear space is continuous with endoplasmic reticulum, and the nuclear outer membrane shares many features with the reticular membrane. We now show that inositol 1,4,5-trisphosphate (InsP3) receptors associated with the ] nucleus release Ca2+ from isolated Xenopus laevis oocyte nuclei. Electrophysiological measurements of the intracellular InsP3 receptor in its native membrane have not been possible on the fine filamentous endoplasmic reticulum. In this paper, we directly measure InsP3-dependent receptor channels in isolated nuclei. The nuclear InsP3 receptor is activated by InsP3 and modulated by Ca2+. The channel is weakly regulated by ATP, is mildly voltage dependent, and has a greater conductance with monovalent cations than with divalent cations

    CatSper and Two-Pore channels (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    CatSper channels (CatSper1-4, nomenclature as agreed by NC-IUPHAR [13]) are putative 6TM, voltage-gated, alkalinization-activated calcium permeant channels that are presumed to assemble as a tetramer of α-like subunits and mediate the current ICatSper [21]. In mammals, CatSper subunits are structurally most closely related to individual domains of voltage-activated calcium channels (Cav) [36]. CatSper1 [36], CatSper2 [33] and CatSpers 3 and 4 [25, 19, 32], in common with a putative 2TM auxiliary CatSperβ protein [24] and two putative 1TM associated CatSperγ and CatSperδ proteins [42, 11], are restricted to the testis and localised to the principle piece of sperm tail. The novel cross-species CatSper channel inhibitor, RU1968, has been proposed as a useful tool to aid characterisation of native CatSper channels [37].Two-pore channels (TPCs) are structurally related to CatSpers, CaVs and NaVs. TPCs have a 2x6TM structure with twice the number of TMs of CatSpers and half that of CaVs. There are three animal TPCs (TPC1-TPC3). Humans have TPC1 and TPC2, but not TPC3. TPC1 and TPC2 are localized in endosomes and lysosomes [4]. TPC3 is also found on the plasma membrane and forms a voltage-activated, non-inactivating Na+ channel [5]. All the three TPCs are Na+-selective under whole-cell or whole-organelle patch clamp recording [44, 7, 6]. The channels may also conduct Ca2+ [29]

    Two Separate Interfaces between the Voltage Sensor and Pore Are Required for the Function of Voltage-Dependent K+ Channels

    Get PDF
    Voltage-dependent K+ (Kv) channels gate open in response to the membrane voltage. To further our understanding of how cell membrane voltage regulates the opening of a Kv channel, we have studied the protein interfaces that attach the voltage-sensor domains to the pore. In the crystal structure, three physical interfaces exist. Only two of these consist of amino acids that are co-evolved across the interface between voltage sensor and pore according to statistical coupling analysis of 360 Kv channel sequences. A first co-evolved interface is formed by the S4-S5 linkers (one from each of four voltage sensors), which form a cuff surrounding the S6-lined pore opening at the intracellular surface. The crystal structure and published mutational studies support the hypothesis that the S4-S5 linkers convert voltage-sensor motions directly into gate opening and closing. A second co-evolved interface forms a small contact surface between S1 of the voltage sensor and the pore helix near the extracellular surface. We demonstrate through mutagenesis that this interface is necessary for the function and/or structure of two different Kv channels. This second interface is well positioned to act as a second anchor point between the voltage sensor and the pore, thus allowing efficient transmission of conformational changes to the pore's gate
    corecore