3 research outputs found

    An Output Feedback Discrete-Time Controller for the DC-DC Buck Converter

    No full text
    This paper presents a discrete-time output feedback controller to regulate the output voltage of a DC-DC buck converter. The proposal’s main feature is the application of a discrete-time equivalent of the robust exact filtering differentiator. First, the document exposes a theoretical analysis of the closed-loop system, where it is considered the problem of implementing a real-time differentiator with a good relationship between exactness and noise filtration performance. Hence, secondly, the controller in a laboratory setup is presented. The first experimental results suggest that the proposed controller exhibits good robustness against noise and maintains the asymptotic accuracy, even with saturated control inputs, as in the case of the DC-DC buck converter. Consequently, aiming to verify the features of the proposed method, the controller is validated through multiple experiments, showing satisfactory voltage tracking accuracy, good suppression of instantaneous load and supply voltage disturbances, and robustness against bounded measurement noise

    An Output Feedback Discrete-Time Controller for the DC-DC Buck Converter

    No full text
    This paper presents a discrete-time output feedback controller to regulate the output voltage of a DC-DC buck converter. The proposal’s main feature is the application of a discrete-time equivalent of the robust exact filtering differentiator. First, the document exposes a theoretical analysis of the closed-loop system, where it is considered the problem of implementing a real-time differentiator with a good relationship between exactness and noise filtration performance. Hence, secondly, the controller in a laboratory setup is presented. The first experimental results suggest that the proposed controller exhibits good robustness against noise and maintains the asymptotic accuracy, even with saturated control inputs, as in the case of the DC-DC buck converter. Consequently, aiming to verify the features of the proposed method, the controller is validated through multiple experiments, showing satisfactory voltage tracking accuracy, good suppression of instantaneous load and supply voltage disturbances, and robustness against bounded measurement noise

    Control of Vapor Pressure Deficit (VPD) on Black Sesame Seed (Sesamum indicum L.) Sprout Production in a Micro-Greenhouse Using Intelligent Control

    No full text
    The demand for fresh and healthy food has been increasing, and different options for growing sprouts have been presented to solve this, such as traditional techniques and cultivation under controlled conditions. However, sprout farming has not explored all the tools available to produce these foods under controlled conditions. This study presents an alternative to produce sesame seed sprouts in a micro-greenhouse applying intelligent control algorithms for vapor pressure deficit. There was an improvement of 56% in the germination percentage, 2.59 in the germination index, 9.7% in the production of proteins, 1.1% in ash and an increase of 77.03 mm in the sprouts’ length collected in the micro-greenhouse in comparison with the traditional technique. This was achieved by maintaining a mean error for soil moisture at 87% and 0.93 kPa for vapor pressure deficit by applying proportional–integral–derivative, fuzzy logic and neural network control algorithms in the micro-greenhouse. The study shows that the nutritional content, the measured germination parameters and the size are improved in sesame sprout production by applying intelligent control algorithms for vapor pressure deficit in a micro-greenhouse
    corecore