20,756 research outputs found

    The Complex Interstellar Na I Absorption toward h and Chi Persei

    Full text link
    Recent high spatial and spectral resolution investigations of the diffuse interstellar medium (ISM) have found significant evidence for small-scale variations in the interstellar gas on scales less than or equal to 1 pc. To better understand the nature of small-scale variations in the ISM, we have used the KPNO WIYN Hydra multi-object spectrograph, which has a mapping advantage over the single-axis, single-scale limitations of studies using high proper motion stars and binary stars, to obtain moderate resolution (~12 km/s) interstellar Na I D absorption spectra of 172 stars toward the double open cluster h and Chi Persei. All of the sightlines toward the 150 stars with spectra that reveal absorption from the Perseus spiral arm show different interstellar Na I D absorption profiles in the Perseus arm gas. Additionally, we have utilized the KPNO Coude Feed spectrograph to obtain high-resolution (~3 km/s) interstellar Na I D absorption spectra of 24 of the brighter stars toward h and Chi Per. These spectra reveal an even greater complexity in the interstellar Na I D absorption in the Perseus arm gas and show individual components changing in number, velocity, and strength from sightline to sightline. If each of these individual velocity components represents an isolated cloud, then it would appear that the ISM of the Perseus arm gas consists of many small clouds. Although the absorption profiles vary even on the smallest scales probed by these high-resolution data (~30";~0.35pc), our analysis reveals that some interstellar Na I D absorption components from sightline to sightline are related, implying that the ISM toward h and Chi Per is probably comprised of sheets of gas in which we detect variations due to differences in the local physical conditions of the gas.Comment: 27 pages text; 8 figure

    Observations of Small Scale ISM Structure in Dense Atomic Gas

    Full text link
    We present high resolution (R~170,000) Kitt Peak National Observatory Co'ude Feed telescope observations of the interstellar KI 7698 angstrom line towards 5 multiple star systems with saturated NaI components. We compare the KI absorption line profiles in each of the two (or three) lines of sight in these systems, and find significant differences between the sight-lines in 3 out of the 5 cases. We infer that the small scale structure traced by previous NaI observations is also present in at least some of the components with saturated NaI absorption lines, and thus the small scale structures traced by the neutral species are occurring at some level in clouds of all column densities. We discuss the implications of that conclusion and a potential explanation by density inhomogeneities

    Quantum lattice gases and their invariants

    Get PDF
    The one particle sector of the simplest one dimensional quantum lattice gas automaton has been observed to simulate both the (relativistic) Dirac and (nonrelativistic) Schroedinger equations, in different continuum limits. By analyzing the discrete analogues of plane waves in this sector we find conserved quantities corresponding to energy and momentum. We show that the Klein paradox obtains so that in some regimes the model must be considered to be relativistic and the negative energy modes interpreted as positive energy modes of antiparticles. With a formally similar approach--the Bethe ansatz--we find the evolution eigenfunctions in the two particle sector of the quantum lattice gas automaton and conclude by discussing consequences of these calculations and their extension to more particles, additional velocities, and higher dimensions.Comment: 19 pages, plain TeX, 11 PostScript figures included with epsf.tex (ignore the under/overfull \vbox error messages

    Negative Refraction Gives Rise to the Klein Paradox

    Full text link
    Electromagnetic negative refraction in metamaterials has attracted increasingly great interest, since its first experimental verification in 2001. It potentially leads to the applications superior to conventional devices including compact antennas for mobile stations, imaging beyond the diffraction limit, and high-resolution radars, not to mention the anamolous wave propagation in fundamental optics. Here, we report how metamaterials could be used to simulate the "negative refraction of spin-zero particles interacting with a strong potential barrier", which gives rise to the Klein paradox--a counterintuitive relativistic process. We address the underlying physics of analogous wave propagation behaviours in those two entirely different domains of quantum and classical.Comment: 4 journal pages, 2 figure

    Deterministic Entanglement of Assistance and Monogamy Constraints

    Full text link
    Certain quantum information tasks require entanglement of assistance, namely a reduction of a tripartite entangled state to a bipartite entangled state via local measurements. We establish that 'concurrence of assistance' (CoA) identifies capabilities and limitations to producing pure bipartite entangled states from pure tripartite entangled states and prove that CoA is an entanglement monotone for (2×2×n)(2\times2\times n)-dimensional pure states. Moreover, if the CoA for the pure tripartite state is at least as large as the concurrence of the desired pure bipartite state, then the former may be transformed to the latter via local operations and classical communication, and we calculate the maximum probability for this transformation when this condition is not met.Comment: 5 pages, no figure

    Small-Scale Interstellar Na I Structure Toward M92

    Get PDF
    We have used integral field echelle spectroscopy with the DensePak fiber-optic array on the KPNO WIYN telescope to observe the central 27" x 43" of the globular cluster M92 in the Na I D wavelength region at a spatial resolution of 4". Two interstellar Na I absorption components are evident in the spectra at LSR velocities of 0 km/s (Cloud 1) and -19 km/s (Cloud 2). Substantial strength variations in both components are apparent down to scales limited by the fiber-to-fiber separations. The derived Na I column densities differ by a factor of 4 across the Cloud 1 absorption map and by a factor of 7 across the Cloud 2 map. Using distance upper limits of 400 and 800 pc for Cloud 1 and Cloud 2, respectively, the absorption maps indicate structure in the ISM down to scales of 1600 and 3200 AU. The fiber-to-fiber Na I column density differences toward M92 are comparable to those found in a similar study of the ISM toward the globular cluster M15. Overall, the structures in the interstellar components toward M92 have significantly lower column densities than those toward M15. We interpret these low column density structures as small-scale turbulent variations in the gas and compare them to the larger-scale, higher column density variations toward M15, which may be the hallmarks of actual H I structures.Comment: 9 pages, 2 figures, accepted for publication in ApJ Letter
    corecore