2,420 research outputs found

    Efficient sharing of a continuous-variable quantum secret

    Full text link
    We propose an efficient scheme for sharing a continuous variable quantum secret using passive optical interferometry and squeezers: this efficiency is achieved by showing that a maximum of two squeezers is required to replicate the secret state, and we obtain the cheapest configuration in terms of total squeezing cost. Squeezing is a cost for the dealer of the secret as well as for the receivers, and we quantify limitations to the fidelity of the replicated secret state in terms of the squeezing employed by the dealer.Comment: 7 pages, 3 figure

    Surficial fractures in the Navajo sandstone, south-western USA: the roles of thermal cycles, rainstorms, granular disintegration, and iterative cracking

    Get PDF
    Deep (\u3e 5 m) sheeting fractures in the Navajo sandstone are evident at numerous sites in southern Utah and derive from tectonic stresses. Strong diurnal thermal cycles are, however, the likely triggers for shallow (\u3c 0.3 m) sheeting fractures. Data from subsurface thermal sensors reveal that large temperature differences between sensors at 2 and 15 cm depth on clear summer afternoons are as great as those that trigger sheeting fractures in exposed California granite. Extensive polygonal patterns in the Navajo sandstone are composed of surface-perpendicular fractures and were produced by contractile stresses. Numerous studies have shown that porewater diminishes the tensile strength of sandstone. Based on our thermal records, we propose that cooling during monsoonal rainstorms triggers polygonal fracturing of temporarily weakened rock. On steep outcrops, polygonal patterns are rectilinear and orthogonal, with T-vertices. Lower-angle slopes host hexagonal patterns (defined by the dominance of Y-vertices). Intermediate patterns with rectangles and hexagons of similar scale are common. We posit that outcropping fractures are advancing downward by iterative steps, and that hexagons on sandstone surfaces (like prismatic columns of basalt) have evolved from ancestral orthogonal polygons of similar scale. In lava flows, fractures elongate intermittently as they follow a steep thermal gradient (the source of stress) as it rapidly moves through the rock mass. In our model, a steep, surficial thermal gradient descends through unfractured sandstone, but at the slow pace of granular disintegration. Through time, as the friable rock on stable slopes erodes, iterative cracking advances into new space. Hexagonal patterns form as new fractures, imperfectly guided by the older ones, propagate in new directions, and vertices drift into a configuration that minimizes the ratio of fracture length to polygon area

    Field application of silicon alleviates drought stress and improves water use efficiency in wheat

    Get PDF
    Detrimental impacts of drought on crop yield have tripled in the last 50 years with climate models predicting that the frequency of such droughts will intensify in the future. Silicon (Si) accumulation, especially in Poaceae crops such as wheat (Triticum aestivum L.), may alleviate the adverse impacts of drought. We have very limited information, however, about whether Si supplementation could alleviate the impacts of drought under field conditions and no studies have specifically manipulated rainfall. Using field–based rain exclusion shelters, we determined whether Si supplementation (equivalent to 39, 78 and 117 kg ha-1) affected T. aestivum growth, elemental chemistry [Si, carbon (C) and nitrogen (N)], physiology (rates of photosynthesis, transpiration, stomatal conductance, and water use efficiency) and yield (grain production) under ambient and drought (50% of ambient) rainfall scenarios. Averaged across Si treatments, drought reduced shoot mass by 21% and grain production by 18%. Si supplementation increased shoot mass by up to 43% and 73% in ambient and drought water treatments, respectively, and restored grain production in droughted plants to levels comparable with plants supplied with ambient rainfall. Si supplementation increased leaf-level water use efficiency by 32–74%, depending on Si supplementation rates. Water supply and Si supplementation did not alter concentrations of C and N, but Si supplementation increased shoot C content by 39% and 83% under ambient and drought conditions, respectively. This equates to an increase from 6.4 to 8.9 tonnes C ha-1 and from 4.03 to 7.35 tonnes C ha-1 under ambient and drought conditions, respectively. We conclude that Si supplementation ameliorated the negative impacts of drought on T. aestivum growth and grain yield, potentially through its beneficial impacts on water use efficiency. Moreover, the beneficial impacts of Si on plant growth and C storage may render Si supplementation a useful tool for both drought mitigation and C sequestration

    Transit Timing Observations from Kepler: VI. Potentially interesting candidate systems from Fourier-based statistical tests

    Get PDF
    We analyze the deviations of transit times from a linear ephemeris for the Kepler Objects of Interest (KOI) through Quarter six (Q6) of science data. We conduct two statistical tests for all KOIs and a related statistical test for all pairs of KOIs in multi-transiting systems. These tests identify several systems which show potentially interesting transit timing variations (TTVs). Strong TTV systems have been valuable for the confirmation of planets and their mass measurements. Many of the systems identified in this study should prove fruitful for detailed TTV studies.Comment: 32 pages, 6 of text and one long table, Accepted to Ap

    Laser ablation loading of a surface-electrode ion trap

    Full text link
    We demonstrate loading by laser ablation of 88^{88}Sr+^+ ions into a mm-scale surface-electrode ion trap. The laser used for ablation is a pulsed, frequency-tripled Nd:YAG with pulse energies of 1-10 mJ and durations of 3-5 ns. An additional laser is not required to photoionize the ablated material. The efficiency and lifetime of several candidate materials for the laser ablation target are characterized by measuring the trapped ion fluorescence signal for a number of consecutive loads. Additionally, laser ablation is used to load traps with a trap depth (40 meV) below where electron impact ionization loading is typically successful (≳\gtrsim 500 meV).Comment: 4 pages, 4 figure
    • …
    corecore