1,310 research outputs found

    Interception in Distance-Vector Routing Networks

    Full text link
    Despite the large effort devoted to cybersecurity research over the last decades, cyber intrusions and attacks are still increasing. With respect to routing networks, route hijacking has highlighted the need to reexamine the existing protocols that govern traffic routing. In particular, our pri- mary question is how the topology of a network affects the susceptibility of a routing protocol to endogenous route misdirection. In this paper we define and analyze an abstract model of traffic interception (i.e. eavesdropping) in distance-vector routing networks. Specifically, we study al- gorithms that measure the potential of groups of dishonest agents to divert traffic through their infrastructure under the constraint that messages must reach their intended destinations. We relate two variants of our model based on the allowed kinds of lies, define strategies for colluding agents, and prove optimality in special cases. In our main theorem we derive a provably optimal monitoring strategy for subsets of agents in which no two are adjacent, and we extend this strategy to the general case. Finally, we use our results to analyze the susceptibility of real and synthetic networks to endogenous traffic interception. In the Autonomous Systems (AS) graph of the United States, we show that compromising only 18 random nodes in the AS graph surprisingly captures 10% of all traffic paths in the network in expectation when a distance-vector routing protocol is in use

    Line-of-Sight Reddening Predictions: Zero Points, Accuracies, the Interstellar Medium, and the Stellar Populations of Elliptical Galaxies

    Full text link
    Revised (B-V)_0-Mg_2 data for 402 elliptical galaxies are given to test reddening predictions which can also tell us both what the intrinsic errors are in this relationship among gE galaxy stellar populations, as well as details of nearby structure in the interstellar medium (ISM) of our Galaxy and of the intrinsic errors in reddening predictions. Using least-squares fits, the explicit 1-sigma errors in the Burstein-Heiles (BH) and the Schlegel et al. (IR) predicted reddenings are calculated, as well as the 1-sigma observational error in the (B-V)_0-Mg_2 for gE galaxies. It is found that, in directions with E(B-V)<0.100 mag (where most of these galaxies lie), 1-sigma errors in the IR reddening predictions are 0.006 to 0.009 in E(B-V) mag, those for BH reddening prediction are 0.011 mag, and the 1-sigma agreement between the two reddening predictions is 0.007 mag. IR predictions have an accuracy of 0.010-0.011 mag in directions with E(B-V)>= 0.100 mag, significantly better than those of the BH predictions (0.024-0.025). Gas-to-dust variations that vary by a factor of 3, both high and low, exist along many lines-of-sight in our Galaxy. The approx 0.02 higher reddening zero point in E(B-V) previously determined by Schlegel et al. is confirmed, primarily at the Galactic poles. Despite this, both methods also predict many directions with E(B-V)<0.015 mag. Independent evidence of reddening at the North Galactic pole is reviewed, with the conclusion that there still exists directions at the NGP that have E(B-V)<<0.01. Two lines of evidence suggest that IR reddenings are overpredicted in directions with high gas-to-dust ratios. As high gas-to-dust directions in the ISM also include the Galactic poles, this overprediction is the likely cause of the E(B-V) = 0.02 mag larger IR reddening zero point.Comment: 5 figure

    The Quest for the Dominant Stellar Population in the Giant Elliptical NGC 5018

    Full text link
    Newly obtained HST/WFPC2 images of the disturbed elliptical galaxy NGC 5018 show that the average amount of internal reddening due to the its complex ``dust web'' is as low as E(B-V)~0.02 within the IUE aperture, thus implying that its observed and intrinsic energy distributions do not differ significantly down to UV wavelengths. This, in turn, is quite relevant to the current debate on the age of its dominant stellar population.Comment: 2 pages, 1 figure. Proceedings of the conference "Galaxy Disks and Disk Galaxies", ASP Conference Series, eds. J.G. Funes, S.J. and E.M. Corsin

    A Statistical Treatment of the Gamma-Ray Burst "No Host Galaxy" Problem: II. Energies of Standard Candle Bursts

    Full text link
    With the discovery that the afterglows after some bursts are coincident with faint galaxies, the search for host galaxies is no longer a test of whether bursts are cosmological, but rather a test of particular cosmological models. The methodology we developed to investigate the original "no host galaxy" problem is equally valid for testing different cosmological models, and is applicable to the galaxies coincident with optical transients. We apply this methodology to a family of models where we vary the total energy of standard candle bursts. We find that total isotropic energies of E<2e52~erg are ruled out while log(E)~53 erg is favored.Comment: To appear in Ap.J., 514, 15 pages + 7 figures, AASTeX 4.0. Revisions are: additional author, updated data, and minor textual change
    corecore