29 research outputs found

    Endothelial Expression of TGFβ Type II Receptor Is Required to Maintain Vascular Integrity during Postnatal Development of the Central Nervous System

    Get PDF
    TGFβ signalling in endothelial cells is important for angiogenesis in early embryonic development, but little is known about its role in early postnatal life. To address this we used a tamoxifen inducible Cre-LoxP strategy in neonatal mice to deplete the TypeII TGFβ receptor (Tgfbr2) specifically in endothelial cells. This resulted in multiple micro-haemorrhages, and glomeruloid-like vascular tufts throughout the cerebral cortices and hypothalamus of the brain as well as in retinal tissues. A detailed examination of the retinal defects in these mutants revealed that endothelial adherens and tight junctions were in place, pericytes were recruited and there was no failure of vascular smooth muscle differentiation. However, the deeper retinal plexus failed to form in these mutants and the angiogenic sprouts stalled in their progress towards the inner nuclear layer. Instead the leading endothelial cells formed glomerular tufts with associated smooth muscle cells. This evidence suggests that TGFβ signalling is not required for vessel maturation, but is essential for the organised migration of endothelial cells as they begin to enter the deeper layers of the retina. Thus, TGFβ signalling is essential in vascular endothelial cells for maintaining vascular integrity at the angiogenic front as it migrates into developing neural tissues in early postnatal life

    Gpr124 is essential for blood-brain barrier integrity in central nervous system disease

    Get PDF
    Although blood-brain barrier (BBB) compromise is central to the etiology of diverse central nervous system (CNS) disorders, endothelial receptor proteins that control BBB function are poorly defined. The endothelial G-protein-coupled receptor (GPCR) Gpr124 has been reported to be required for normal forebrain angiogenesis and BBB function in mouse embryos, but the role of this receptor in adult animals is unknown. Here Gpr124 conditional knockout (CKO) in the endothelia of adult mice did not affect homeostatic BBB integrity, but resulted in BBB disruption and microvascular hemorrhage in mouse models of both ischemic stroke and glioblastoma, accompanied by reduced cerebrovascular canonical Wnt-β-catenin signaling. Constitutive activation of Wnt-β-catenin signaling fully corrected the BBB disruption and hemorrhage defects of Gpr124-CKO mice, with rescue of the endothelial gene tight junction, pericyte coverage and extracellular-matrix deficits. We thus identify Gpr124 as an endothelial GPCR specifically required for endothelial Wnt signaling and BBB integrity under pathological conditions in adult mice. This finding implicates Gpr124 as a potential therapeutic target for human CNS disorders characterized by BBB disruption

    Abstracts from the 20th International Symposium on Signal Transduction at the Blood-Brain Barriers

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/138963/1/12987_2017_Article_71.pd

    Shear stress-regulated miR-27b controls pericyte recruitment by repressing SEMA6A and SEMA6D

    No full text
    Aims Vessel maturation involves the recruitment of mural cells such as pericytes and smooth muscle cells. Laminar shear stress is a major trigger for vessel maturation, but the molecular mechanisms by which shear stress affects recruitment of pericytes are unclear. MicroRNAs (miRs) are small non-coding RNAs, which post-transcriptionally control gene expression. The aim of the present study was to unveil the mechanism by which shear stress-regulated microRNAs contribute to vessel maturation. Methods and results Here, we show that laminar shear stress increased miR-27a and miR-27b expression in vitro and in ex vivo in mouse femoral artery explants. Overexpression of miR-27b in endothelial cells increased pericyte adhesion and pericyte recruitment in vitro. In vitro barrier function of endothelial-pericyte co-cultures was augmented by miR-27b overexpression, whereas inhibition of miR-27a/b reduced adhesion and pericyte coverage and decreased barrier functions. In vivo, pharmacological inhibition of miR-27a/b by locked nucleic acid antisense oligonucleotides significantly reduced pericyte coverage and increased water content in the murine uterus. MiR-27b overexpression repressed semaphorins (SEMA), which mediate repulsive signals, and the vessel destabilizing human but not mouse Angiopoietin-2 (Ang-2). Silencing of SEMA6A and SEMA6D rescued the reduced pericyte adhesion by miR-27 inhibition. Furthermore, inhibition of SEMA6D increased barrier function of an endothelial-pericyte co-culture in vitro. Conclusion The present study demonstrates for the first time that shear stress-regulated miR-27b promotes the interaction of endothelial cells with pericytes, partly by repressing SEMA6A and SEMA6D
    corecore