825 research outputs found

    Regulatory T cells in systemic lupus erythematosus: past, present and future

    Get PDF
    Regulatory/suppressor T cells (Tregs) maintain immunologic homeo-stasis and prevent autoimmunity. In this article, past studies and recent studies of Tregs in mouse models for lupus and of human systemic lupus erythematosus are reviewed concentrating on CD4+CD25+Foxp3+ Tregs. These cells consist of thymus-derived, natural Tregs and peripherally induced Tregs that are similar phenotypically and functionally. These Tregs are decreased in young lupus-prone mice, but are present in normal numbers in mice with established disease. In humans, most workers report CD4+Tregs are decreased in subjects with active systemic lupus erythematosus, but the cells increase with treatment and clinical improvement. The role of immunogenic and tolerogenic dendritic cells in controlling Tregs is discussed, along with new strategies to normalize Treg function in systemic lupus erythematosus

    Identity of mysterious CD4+CD25-Foxp3+ cells in SLE

    Get PDF
    Various abnormalities in CD4+CD25+ regulatory T cells (Tregs) in systemic lupus erythematosus (SLE) include increased Foxp3+ cells that are CD25 negative. Barring methodological technical factors, these cells could be atypical Tregs or activated non-Treg CD4+ cells that express Foxp3. Two groups have reached opposite conclusions that could possibly reflect the subjects studied. One group studied untreated new-onset SLE and suggested that these T cells were mostly CD25-Foxp3+ non-Tregs. The other group studied patients with long-standing disease and suggested that these cells are mostly dysfunctional Tregs. A third group reported increased Foxp3+CD4+CD25dim rather than CD25- cells in active SLE and these were also non-Tregs. Thus, it is likely that not all Foxp3+ T cells in SLE have protective suppressive activity

    Medicare: Did the Devil Make Us Do It?

    Get PDF

    Medicare: Did the Devil Make Us Do It?

    Get PDF

    Nanoparticles Engineered as Artificial Antigen-Presenting Cells Induce Human CD4+ and CD8+ Tregs That Are Functional in Humanized Mice

    Get PDF
    Artificial antigen-presenting cells (aAPCs) are synthetic versions of naturally occurring antigen-presenting cells (APCs) that, similar to natural APCs, promote efficient T effector cell responses in vitro. This report describes a method to produce acellular tolerogenic aAPCs made of biodegradable poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) and encapsulating IL-2 and TGF-β for a paracrine release to T cells. We document that these aAPCs can induce both human CD4(+) and CD8(+) T cells to become FoxP3(+) T regulatory cells (Tregs). The aAPC NP-expanded human Tregs are functional in vitro and can modulate systemic autoimmunity in vivo in humanized NSG mice. These findings establish a proof-of-concept to use PLGA NPs as aAPCs for the induction of human Tregs in vitro and in vivo, highlighting the immunotherapeutic potential of this targeted approach to repair IL-2 and/or TGF-β defects documented in certain autoimmune diseases such as systemic lupus erythematosus

    A Statistical Mechanical Problem in Schwarzschild Spacetime

    Full text link
    We use Fermi coordinates to calculate the canonical partition function for an ideal gas in a circular geodesic orbit in Schwarzschild spacetime. To test the validity of the results we prove theorems for limiting cases. We recover the Newtonian gas law subject only to tidal forces in the Newtonian limit. Additionally we recover the special relativistic gas law as the radius of the orbit increases to infinity. We also discuss how the method can be extended to the non ideal gas case.Comment: Corrected an equation misprint, added four references, and brief comments on the system's center of mass and the thermodynamic limi
    • …
    corecore