3,030 research outputs found

    (Extra)Ordinary Gauge Mediation

    Get PDF
    We study models of "(extra)ordinary gauge mediation," which consist of taking ordinary gauge mediation and extending the messenger superpotential to include all renormalizable couplings consistent with SM gauge invariance and an R-symmetry. We classify all such models and find that their phenomenology can differ significantly from that of ordinary gauge mediation. Some highlights include: arbitrary modifications of the squark/slepton mass relations, small mu and Higgsino NLSP's, and the possibility of having fewer than one effective messenger. We also show how these models lead naturally to extremely simple examples of direct gauge mediation, where SUSY and R-symmetry breaking occur not in a hidden sector, but due to the dynamics of the messenger sector itself.Comment: 50 pages, 11 figure

    The Analytic Bootstrap and AdS Superhorizon Locality

    Get PDF
    We take an analytic approach to the CFT bootstrap, studying the 4-pt correlators of d > 2 dimensional CFTs in an Eikonal-type limit, where the conformal cross ratios satisfy |u| << |v| < 1. We prove that every CFT with a scalar operator \phi must contain infinite sequences of operators O_{\tau,l} with twist approaching \tau -> 2\Delta_\phi + 2n for each integer n as l -> infinity. We show how the rate of approach is controlled by the twist and OPE coefficient of the leading twist operator in the \phi x \phi OPE, and we discuss SCFTs and the 3d Ising Model as examples. Additionally, we show that the OPE coefficients of other large spin operators appearing in the OPE are bounded as l -> infinity. We interpret these results as a statement about superhorizon locality in AdS for general CFTs.Comment: 33 pages, no figures; V2 citations adde

    Discrimination and synthesis of recursive quantum states in high-dimensional Hilbert spaces

    Full text link
    We propose an interferometric method for statistically discriminating between nonorthogonal states in high dimensional Hilbert spaces for use in quantum information processing. The method is illustrated for the case of photon orbital angular momentum (OAM) states. These states belong to pairs of bases that are mutually unbiased on a sequence of two-dimensional subspaces of the full Hilbert space, but the vectors within the same basis are not necessarily orthogonal to each other. Over multiple trials, this method allows distinguishing OAM eigenstates from superpositions of multiple such eigenstates. Variations of the same method are then shown to be capable of preparing and detecting arbitrary linear combinations of states in Hilbert space. One further variation allows the construction of chains of states obeying recurrence relations on the Hilbert space itself, opening a new range of possibilities for more abstract information-coding algorithms to be carried out experimentally in a simple manner. Among other applications, we show that this approach provides a simplified means of switching between pairs of high-dimensional mutually unbiased OAM bases

    Quantum simulation of topologically protected states using directionally unbiased linear-optical multiports

    Full text link
    It is shown that quantum walks on one-dimensional arrays of special linear-optical units allow the simulation of discrete-time Hamiltonian systems with distinct topological phases. In particular, a slightly modified version of the Su-Schrieffer-Heeger (SSH) system can be simulated, which exhibits states of nonzero winding number and has topologically protected boundary states. In the large-system limit this approach uses quadratically fewer resources to carry out quantum simulations than previous linear-optical approaches and can be readily generalized to higher-dimensional systems. The basic optical units that implement this simulation consist of combinations of optical multiports that allow photons to reverse direction

    Quantum simulation of discrete-time Hamiltonians using directionally unbiased linear optical multiports

    Full text link
    Recently, a generalization of the standard optical multiport was proposed [Phys. Rev. A 93, 043845 (2016)]. These directionally unbiased multiports allow photons to reverse direction and exit backwards from the input port, providing a realistic linear optical scattering vertex for quantum walks on arbitrary graph structures. Here, it is shown that arrays of these multiports allow the simulation of a range of discrete-time Hamiltonian systems. Examples are described, including a case where both spatial and internal degrees of freedom are simulated. Because input ports also double as output ports, there is substantial savings of resources compared to feed-forward networks carrying out the same functions. The simulation is implemented in a scalable manner using only linear optics, and can be generalized to higher dimensional systems in a straightforward fashion, thus offering a concrete experimentally achievable implementation of graphical models of discrete-time quantum systems.This research was supported by the National Science Foundation EFRI-ACQUIRE Grant No. ECCS-1640968, NSF Grant No. ECCS-1309209, and by the Northrop Grumman NG Next. (ECCS-1640968 - National Science Foundation EFRI-ACQUIRE Grant; ECCS-1309209 - NSF Grant; Northrop Grumman NG Next

    Investigating the Relationship between Topology and Evolution in a Dynamic Nematode Odor Genetic Network

    Get PDF
    The relationship between biological network architectures and evolution is unclear. Within the phylum nematoda olfaction represents a critical survival tool. For nematodes, olfaction contributes to multiple processes including the finding of food, hosts, and reproductive partners, making developmental decisions, and evading predators. Here we examine a dynamic nematode odor genetic network to investigate how divergence, diversity, and contribution are shaped by network topology. Our findings describe connectivity frameworks and characteristics that correlate with molecular evolution and contribution across the olfactory network. Our data helps guide the development of a robust evolutionary description of the nematode odor network that may eventually aid in the prediction of interactive and functional qualities of novel nodes
    • …
    corecore