39 research outputs found
Suppressed basal melting in the eastern Thwaites Glacier grounding zone
This work is from the MELT project, a component of the International Thwaites Glacier Collaboration (ITGC). Support from the National Science Foundation (NSF, grant no. 1739003) and the Natural Environment Research Council (NERC, grant no. NE/S006656/1). Logistics provided by NSF U.S. Antarctic Program and NERC British Antarctic Survey. The ship-based CTD data were supported by the ITGC TARSAN project (NERC grant nos. NE/S006419/1 and NE/S006591/1; NSF grant no. 1929991). ITGC contribution no. ITGC 047.Thwaites Glacier is one of the fastest-changing ice–ocean systems in Antarctica1,2,3. Much of the ice sheet within the catchment of Thwaites Glacier is grounded below sea level on bedrock that deepens inland4, making it susceptible to rapid and irreversible ice loss that could raise the global sea level by more than half a metre2,3,5. The rate and extent of ice loss, and whether it proceeds irreversibly, are set by the ocean conditions and basal melting within the grounding-zone region where Thwaites Glacier first goes afloat3,6, both of which are largely unknown. Here we show—using observations from a hot-water-drilled access hole—that the grounding zone of Thwaites Eastern Ice Shelf (TEIS) is characterized by a warm and highly stable water column with temperatures substantially higher than the in situ freezing point. Despite these warm conditions, low current speeds and strong density stratification in the ice–ocean boundary layer actively restrict the vertical mixing of heat towards the ice base7,8, resulting in strongly suppressed basal melting. Our results demonstrate that the canonical model of ice-shelf basal melting used to generate sea-level projections cannot reproduce observed melt rates beneath this critically important glacier, and that rapid and possibly unstable grounding-line retreat may be associated with relatively modest basal melt rates.Publisher PDFPeer reviewe
Suppressed basal melting in the eastern Thwaites Glacier grounding zone
Thwaites Glacier is one of the fastest-changing ice–ocean systems in Antarctica1,2,3. Much of the ice sheet within the catchment of Thwaites Glacier is grounded below sea level on bedrock that deepens inland4, making it susceptible to rapid and irreversible ice loss that could raise the global sea level by more than half a metre2,3,5. The rate and extent of ice loss, and whether it proceeds irreversibly, are set by the ocean conditions and basal melting within the grounding-zone region where Thwaites Glacier first goes afloat3,6, both of which are largely unknown. Here we show—using observations from a hot-water-drilled access hole—that the grounding zone of Thwaites Eastern Ice Shelf (TEIS) is characterized by a warm and highly stable water column with temperatures substantially higher than the in situ freezing point. Despite these warm conditions, low current speeds and strong density stratification in the ice–ocean boundary layer actively restrict the vertical mixing of heat towards the ice base7,8, resulting in strongly suppressed basal melting. Our results demonstrate that the canonical model of ice-shelf basal melting used to generate sea-level projections cannot reproduce observed melt rates beneath this critically important glacier, and that rapid and possibly unstable grounding-line retreat may be associated with relatively modest basal melt rates
Apolipoprotein A-I vascular gene therapy reduces vein-graft atherosclerosis
Coronary artery venous bypass grafts typically fail because of atherosclerosis driven by lipid and macrophage accumulation. Therapy for vein-graft atherosclerosis is limited to statin drugs, which are only modestly effective. We hypothesized that transduction of vein-graft endothelium of fat-fed rabbits with a helper-dependent adenovirus expressing apolipoprotein AI (HDAdApoAI) would reduce lipid and macrophage accumulation. Fat-fed rabbits received bilateral external jugular vein-to-carotid artery interposition grafts. Four weeks later, one graft per rabbit (n = 23 rabbits) was infused with HDAdApoAI and the contralateral graft with HDAdNull. Grafts were harvested 12 weeks later. Paired analyses of grafts were performed, with vein graft cholesterol, intimal lipid, and macrophage content as the primary endpoints. HDAd genomes were detected in all grafts. APOAI mRNA was median 63-fold higher in HDAdApoAI grafts versus HDAdNull grafts (p < 0.001). HDAdApoAI grafts had a mean 15% lower total cholesterol (by mass spectrometry; p = 0.003); mean 19% lower intimal lipid (by oil red O staining; p = 0.02); and mean 13% lower expression of the macrophage marker CD68 (by reverse transcriptase-mediated quantitative PCR; p = 0.008). In vivo transduction of vein-graft endothelium achieves persistent APOAI expression and reduces vein-graft cholesterol, intimal lipid, and CD68 expression. Vascular gene therapy with APOAI has promise for preventing vein-graft failure caused by atherosclerosis
Improved animal models for testing gene therapy for atherosclerosis
Gene therapy delivered to the blood vessel wall could augment current therapies for atherosclerosis, including systemic drug therapy and stenting. However, identification of clinically useful vectors and effective therapeutic transgenes remains at the preclinical stage. Identification of effective vectors and transgenes would be accelerated by availability of animal models that allow practical and expeditious testing of vessel-wall-directed gene therapy. Such models would include humanlike lesions that develop rapidly in vessels that are amenable to efficient gene delivery. Moreover, because human atherosclerosis develops in normal vessels, gene therapy that prevents atherosclerosis is most logically tested in relatively normal arteries. Similarly, gene therapy that causes atherosclerosis regression requires gene delivery to an existing lesion. Here we report development of three new rabbit models for testing vessel-wall-directed gene therapy that either prevents or reverses atherosclerosis. Carotid artery intimal lesions in these new models develop within 2–7 months after initiation of a high-fat diet and are 20–80 times larger than lesions in a model we described previously. Individual models allow generation of lesions that are relatively rich in either macrophages or smooth muscle cells, permitting testing of gene therapy strategies targeted at either cell type. Two of the models include gene delivery to essentially normal arteries and will be useful for identifying strategies that prevent lesion development. The third model generates lesions rapidly in vector-naïve animals and can be used for testing gene therapy that promotes lesion regression. These models are optimized for testing helper-dependent adenovirus (HDAd)-mediated gene therapy; however, they could be easily adapted for testing of other vectors or of different types of molecular therapies, delivered directly to the blood vessel wall. Our data also supports the promise of HDAd to deliver long-term therapy from vascular endothelium without accelerating atherosclerotic disease
A Rabbit Model for Testing Helper-Dependent Adenovirus-Mediated Gene Therapy for Vein Graft Atherosclerosis
Coronary artery bypass vein grafts are a mainstay of therapy for human atherosclerosis. Unfortunately, the long-term patency of vein grafts is limited by accelerated atherosclerosis. Gene therapy, directed at the vein graft wall, is a promising approach for preventing vein graft atherosclerosis. Because helper-dependent adenovirus (HDAd) efficiently transduces grafted veins and confers long-term transgene expression, HDAd is an excellent candidate for delivery of vein graft-targeted gene therapy. We developed a model of vein graft atherosclerosis in fat-fed rabbits and demonstrated long-term (≥20 weeks) persistence of HDAd genomes after graft transduction. This model enables quantitation of vein graft hemodynamics, wall structure, lipid accumulation, cellularity, vector persistence, and inflammatory markers on a single graft. Time-course experiments identified 12 weeks after transduction as an optimal time to measure efficacy of gene therapy on the critical variables of lipid and macrophage accumulation. We also used chow-fed rabbits to test whether HDAd infusion in vein grafts promotes intimal growth and inflammation. HDAd did not increase intimal growth, but had moderate—yet significant—pro-inflammatory effects. The vein graft atherosclerosis model will be useful for testing HDAd-mediated gene therapy; however, pro-inflammatory effects of HdAd remain a concern in developing HDAd as a therapy for vein graft disease
A critical developmental role for tgfbr2 in myogenic cell lineages is revealed in mice expressing SM22-Cre, not SMMHC-Cre
Smooth muscle cell (SMC)-specific deletion of transforming growth factor beta (TGF-beta) signaling would help elucidate the mechanisms through which TGF-beta signaling contributes to vascular development and disease. We attempted to generate mice with SMC-specific deletion of TGF-beta signaling by mating mice with a conditional ("floxed") allele for the type 11 TGF-beta receptor (tgfbr2(flox)) to mice with SMC-targeted expression of Cre recombinase. We bred male mice transgenic for smooth muscle myosin heavy chain (SMMHC)-Cre with females carrying tgfbr2(flox). Surprisingly, SMMHC-Cre rnice recombined tglbr2(flox) at low levels in SMC and at high levels in the testis. Recombination of tgfbr2(flox) in testis correlated with high-level expression of SMMHC-Cre in testis and germline transmission of tgfbr2(null). In contrast, mice expressing Cre from a SM22 alpha promoter (SM22-Cre) efficiently recombined tgfbr2(flox) in vascular and visceral SMC and the heart, but not in testis. Use of the R26R reporter allele confirmed that Cre-mediated recombination in vascular SMC was inefficient for SMMHC-Cre mice and highly efficient for SM22-Cre mice. Breedings that introduced the SM22-Cre allele into tgfbr2(flox) zygotes in order to generate adult mice that are hemizygous for SM22-Cre and homozygous for tgfbr2(flox) and would have conversion of tgfbr2(flox/flox) to tgfbr2(null/null) in SMC-produced no live SM22-Cre : tgfbr2(flox/flox) pups (P < 0.001). We conclude: (1) "SMC-targeted" Cre lines vary significantly in specificity and efficiency of Cre expression; (2) TGF-beta signaling in the subset of cells that express SM22 alpha is required for normal development; (3) generation of adult mice with absent TGF-beta signaling in SMC remains a challenge. (c) 2006 Elsevier Inc. All rights reserved