2 research outputs found

    Spirolactam-Based Acetyl-CoA Carboxylase Inhibitors: Toward Improved Metabolic Stability of a Chromanone Lead Structure

    No full text
    Acetyl-CoA carboxylase (ACC) catalyzes the rate-determining step in <i>de novo</i> lipogenesis and plays a crucial role in the regulation of fatty acid oxidation. Alterations in lipid metabolism are believed to contribute to insulin resistance; thus inhibition of ACC offers a promising option for intervention in type 2 diabetes mellitus. Herein we disclose a series of ACC inhibitors based on a spirocyclic pyrazololactam core. The lactam series has improved chemical and metabolic stability relative to our previously reported pyrazoloketone series, while retaining potent inhibition of ACC1 and ACC2. Optimization of the pyrazole and amide substituents led to quinoline amide <b>21</b>, which was advanced to preclinical development

    Discovery of Fragment-Derived Small Molecules for in Vivo Inhibition of Ketohexokinase (KHK)

    No full text
    Increased fructose consumption and its subsequent metabolism have been implicated in hepatic steatosis, dyslipidemia, obesity, and insulin resistance in humans. Since ketohexokinase (KHK) is the principal enzyme responsible for fructose metabolism, identification of a selective KHK inhibitor may help to further elucidate the effect of KHK inhibition on these metabolic disorders. Until now, studies on KHK inhibition with small molecules have been limited due to the lack of viable in vivo pharmacological tools. Herein we report the discovery of <b>12</b>, a selective KHK inhibitor with potency and properties suitable for evaluating KHK inhibition in rat models. Key structural features interacting with KHK were discovered through fragment-based screening and subsequent optimization using structure-based drug design, and parallel medicinal chemistry led to the identification of pyridine <b>12</b>
    corecore