39 research outputs found

    Specific respiratory neuron types have increased excitability that drive presympathetic neurones in neurogenic hypertension

    No full text
    A major aspect of hypertension is excessive sympathetic activity but the reasons for this remain elusive. Sympathetic tone is increased in the spontaneously hypertensive (SH) rat reflecting, in part, enhanced respiratory–sympathetic coupling. We aimed to identify which respiratory cells might have altered properties. Using the working heart–brain stem preparation, we monitored simultaneously sympathetic and respiratory nerve activity in combination with intracellular recordings of physiologically characterized medullary presympathetic or respiratory neurons. In SH rats, respiratory modulation of both inspiratory and postinspiratory phases of sympathetic activity was larger relative to Wistar rats. An additional burst of sympathetic activity in the preinspiratory phase was also present in SH rats. After synaptic isolation of rostral medullary presympathetic neurons, there was no difference in their excitability compared with neurons in Wistar rats. Rather, both pre-Bötzinger preinspiratory and Bötzinger postinspiratory neurons had increased neuronal excitability in SH rats relative to Wistar rats; this was attributed to higher input resistance/reduced leak current in preinspiratory neurons and reduced calcium activated potassium conductance in postinspiratory neurons. Thus, the respiratory network of the SH rat is reconfigured to a pattern dominated by heightened excitability of preinspiratory and postinspiratory neurons. These neurons both provide augmented excitatory synaptic drive to rostral medullary presympathetic neurons contributing to excessive sympathetic nerve activity associated with hypertension in the in situ SH rat. Our data indicate selective modulation of potassium conductances in 2 subsets of respiratory neurons contributing to neurogenic hypertension.</jats:p

    Sympathoexcitation during chemoreflex active expiration is mediated by L-glutamate in the RVLM/Botzinger complex of rats

    No full text
    Moraes DJ, Zoccal DB, Machado BH. Sympathoexcitation during chemoreflex active expiration is mediated by L-glutamate in the RVLM/Botzinger complex of rats. J Neurophysiol 108: 610-623, 2012. First published April 25, 2012; doi:10.1152/jn.00057.2012.-The involvement of glutamatergic neurotransmission in the rostral ventrolateral medulla/Botzinger/pre-Botzinger complexes (RVLM/BotC/pre-BotC) on the respiratory modulation of sympathoexcitatory response to peripheral chemoreflex activation (chemoreflex) was evaluated in the working heart-brain stem preparation of juvenile rats. We identified different types of baro- and chemosensitive presympathetic and respiratory neurons intermingled within the RVLM/BotC/pre-BotC. Bilateral microinjections of kynurenic acid (KYN) into the rostral aspect of RVLM (RVLM/BotC) produced an additional increase in frequency of the phrenic nerve (PN: 0.38 +/- 0.02 vs. 1 +/- 0.08 Hz; P &lt; 0.05; n = 18) and hypoglossal (HN) inspiratory response (41 +/- 2 vs. 82 +/- 2%; P &lt; 0.05; n = 8), but decreased postinspiratory (35 +/- 3 vs. 12 +/- 2%; P &lt; 0.05) and late-expiratory (24 +/- 4 vs. 2 +/- 1%; P &lt; 0.05; n = 5) abdominal (AbN) responses to chemoreflex. Likewise, expiratory vagal (cVN; 67 +/- 6 vs. 40 +/- 2%; P &lt; 0.05; n = 5) and expiratory component of sympathoexcitatory (77 +/- 8 vs. 26 +/- 5%; P &lt; 0.05; n = 18) responses to chemoreflex were reduced after KYN microinjections into RVLM/BotC. KYN microinjected into the caudal aspect of the RVLM (RVLM/pre-BotC; n = 16) abolished inspiratory responses [PN (n = 16) and HN (n = 6)], and no changes in magnitude of sympathoexcitatory (n = 16) and expiratory (AbN and cVN; n = 10) responses to chemoreflex, producing similar and phase-locked vagal, abdominal, and sympathetic responses. We conclude that in relation to chemoreflex activation 1) ionotropic glutamate receptors in RVLM/BotC and RVLM/pre-BtC are pivotal to expiratory and inspiratory responses, respectively; and 2) activation of ionotropic glutamate receptors in RVLM/BotC is essential to the coupling of active expiration and sympathoexcitatory response.Sao Paolo Research Foundation (FAPESP)Sao Paolo Research Foundation (FAPESP) [2009/50113-0]National Council for Scientific and Technological Development (CNPq, Barzil)National Council for Scientific and Technological Development (CNPq, Barzil) [502098/2008-2, 301147/2008-6]FAPESP fellowshipFAPESP Fellowship [2010/09805-03

    Evolution and physiology of neural oxygen sensing

    Get PDF
    Major evolutionary trends in animal physiology have been heavily influenced by atmospheric O2 levels. Amongst other important factors, the increase in atmospheric O2 which occurred in the Pre-Cambrian and the development of aerobic respiration beckoned the evolution of animal organ systems that were dedicated to the absorption and transportation of O2, e.g., the respiratory and cardiovascular systems of vertebrates. Global variations of O2 levels in post-Cambrian periods have also been correlated with evolutionary changes in animal physiology, especially cardiorespiratory function. Oxygen transportation systems are, in our view, ultimately controlled by the brain related mechanisms, which senses changes in O2 availability and regulates autonomic and respiratory responses that ensure the survival of the organism in the face of hypoxic challenges. In vertebrates, the major sensorial system for oxygen sensing and responding to hypoxia is the peripheral chemoreflex neuronal pathways, which includes the oxygen chemosensitive glomus cells and several brainstem regions involved in the autonomic regulation to the cardiovascular system and respiratory control. In this review we discuss the concept that regulating O2 homeostasis was one of the primordial roles of the nervous system. We also review the physiology of the peripheral chemoreflex, focusing on the integrative repercussions of chemoreflex activation and the evolutionary importance of this system, which is essential for the survival of complex organisms such as vertebrates. The contribution of hypoxia and peripheral chemoreflex for the development of diseases associated to the cardiovascular and respiratory systems is also discussed in an evolutionary context
    corecore